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Abstract
Learning controllable and generalizable represen-
tation of multivariate data with desired structural
properties remains a fundamental problem in ma-
chine learning. In this paper, we present a novel
framework for learning generative models with
various underlying structures in the latent space.
We represent the inductive bias in the form of
mask variables to model the dependency struc-
ture in the graphical model and extend the theory
of multivariate information bottleneck (Friedman
et al., 2001) to enforce it. Our model provides a
principled approach to learn a set of semantically
meaningful latent factors that reflect various types
of desired structures like capturing correlation or
encoding invariance, while also offering the flex-
ibility to automatically estimate the dependency
structure from data. We show that our framework
unifies many existing generative models and can
be applied to a variety of tasks, including multi-
modal data modeling, algorithmic fairness, and
out-of-distribution generalization.

1. Introduction
Learning structured latent representation of multivariate
data is a fundamental problem in machine learning. Many
latent variable generative models have been proposed to date
based on different inductive biases that reflect the model’s
assumptions or people’s domain knowledge. For instance,
the objectives of the family of β-VAEs (Higgins et al., 2016;
Chen et al., 2018; Kim & Mnih, 2018) try to enforce a
coordinate-wise independent structure among latent vari-
ables to discover disentangled factors of variations.

While these methods have been proven useful in the field of
applications on which they were evaluated, most of them are

1Mila 2Université de Montréal, Montréal, Canada 3Preferred
Networks Inc., Tokyo, Japan. Correspondence to: Ruixiang Zhang
<ruixiang.zhang@umontreal.ca>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

built-in rather heuristic ways to encode the desired structure.
One usually needs to construct an entirely different model
whenever the domain of application changes. In general, the
type of inductive bias differs significantly across different
applications. It is a burden to craft a different architecture for
each application, and there have not been many studies done
for the general and unified way of explicitly representing an
inductive bias to be enforced in generative models.

In this paper, we propose a framework of generative model
that can represent various types of inductive biases in the
form of Bayesian networks. Our method can not only unify
many existing generative models in previous studies, but
it also can lead to new insights about establishing connec-
tions between different models across different domains and
extending them to new applications.

We summarize our contributions in this work as: (i) We
propose a novel general framework of probabilistic gener-
ative model with explicit dependency structure representa-
tion to learn structured latent representation of multivariate
data. (ii) We propose an information-theoretic training ob-
jective by generalizing the multivariate information bottle-
neck theory to encode prior knowledge or impose inductive
bias. (Sec. 3.3) (iii) We propose a flexible and tractable in-
ference model with linear number of inference networks
coupled with super-exponential number of possible depen-
dency structures to model exponential number of inference
distributions. (Sec. 3.4) (iv) We show that our proposed
framework unifies many existing models and demonstrate
its effectiveness in different application tasks, including
multi-modal data generative modeling, algorithmic fairness,
and out-of-distribution generalization.

2. Background
2.1. Notations

We use capital letters (i.e. X ≡ X1:N ) to denote a vector of
N random variables, and lower case letters (i.e. x) for the
values. We use P (X) to denote the probability distribution
and corresponding density with p(x). Given a set S ⊆
{1, 2, . . . , N} of indexes, we use XS ≡ [Xi]i∈S to represent
corresponding subset of random variables. Similar notation
is used for binary indicator vector b that Xb ≡ [Xi]bi=1.
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2.2. Probability and information theory

A Bayesian network G ≡ (V, E) defined over random vari-
ables X is a directed acyclic graph, consisting of a set of
nodes V ≡ {Xi}Ni=1 and a set of directed edges E ⊆ V2.
A node u is called a parent of v if (v,u) ∈ E , and for
each random variable Xi, the set of parents of Xi is de-
noted by PaGXi

. We use G∅ to denote an empty Bayesian
network G∅ ≡ (V, ∅). If a distribution P (X) is consistent
with a Bayesian network G, then it can be factorized as
p(x) =

∏
i p(xi | PaGxi

), denoted by p |= G.

We then briefly introduce the information theory concepts
used in this paper here. The Shannon Entropy is de-
fined as H(X) = −Ep(x) log p(x) to measure the average
number of bits needed to encode values of X ∼ P (X).
The Kullback–Leibler Divergence (KLD) is one of the
most fundamental distance between probability distribu-
tions defined as DKL(P ‖ Q) = Ep log p

q . Mutual In-
formation I(X;Y) = Ep(x,y) log p(x,y)

p(x)p(y) quantifies the
mutual dependence between two random variables X and
Y. The mutual information is zero if and only if X and
Y are independent. Multi-Information is one of multi-
variate mutual information defined as I(X1, . . . ,XN ) =

DKL(p(x1:N ) ‖
∏N
i=1 p(xi)), which generalizes the mu-

tual information concept to quantify the multivariate sta-
tistical independence for arbitrary number of random
variables. (Lin, 1991) proposed a generalized Jensen-
Shannon divergence defined asDπJS = H

(∑N
i=1 πiPi

)
−∑N

i=1 πiH(Pi), where P1, . . . , PN areN distributions with
weights π1, . . . , πN . Commonly used Jensen-Shannon di-
vergence (JSD) can be seen as a special case when N = 2
and π1 = π2 = 1

2 . (Nielsen, 2019) further generalized the
arithmetic mean

∑N
i=1 πiPi to other abstract means and pro-

posed closed-form results of geometric mean of exponential
family distributions and the divergence among them.

As shown in (Friedman et al., 2001), if a distribution
P (X1:N ) is consistent with a Bayesian network G, the multi-
information I(X) can be expressed as a sum of all local mu-
tual information terms: I(X) =

∑N
i=1 I

(
Xi;PaGXi

)
. Then

the multi-information in P (X) with respect to an arbitrary
valid Bayesian network G can be defined 1 as IGp (X) =∑N

i=1 IGp
(
Xi;PaGXi

)
. The M-projection (Koller & Fried-

man, 2009; Friedman et al., 2001) of distribution P (X) to
the set of distribution that is consistent with a Bayesian
network G is defined as D(p ‖ G) = minq|=G DKL(p ‖ q).
Then the following results was introduced in (Friedman
et al., 2001)

D(p ‖ G) = min
q|=G

DKL(p ‖ q) = Ip(X)− IGp (X) (1)

where we use subscript to denote the distribution that the

1Note that P (X) is not necessarily consistent with G here

mutual information term is evaluated with, and we use su-
perscript to denote the graphical structure that the indicates
set of parent nodes used in IGp

(
Xi;PaGXi

)
.

2.3. Variational autoencoder

Variational autoencoder (VAE) (Kingma & Welling, 2014) is
a probabilistic latent variable generative model pθ(x, z) =
pθ(z)pθ(x | z), where pθ(z) is the prior of latent vari-
ables Z and pθ(x | z) is the likelihood distribution for
observed variable X. The generative model is often opti-
mized together with a tractable distribution qφ(z | x) that
approximates the posterior distribution. The distributions
are usually parametrized by neural networks with parame-
ters θ and φ. The inference model and generation model
are jointly optimized by a lower-bound of the KLD between
qφ and pθ in the augmented space (X,Z), namely ELBO:

Eqφ log pθ(x|z)−Eqφ(x)DKL(qφ(z | x) ‖ pθ(z)) ≡ LELBO

(2)
Note −LELBO ≥ DKL(qφ(x)qφ(z | x) ‖ pθ(z)pθ(x | z))
where qφ(x) = pdata(x) denotes the empirical data distri-
bution. The above objective can be optimized efficiently
with the re-parametrization trick (Kingma & Welling, 2014;
2019).

2.4. Multivariate information bottleneck

Multivariate Information Bottleneck (MIB) theory pro-
posed by (Friedman et al., 2001; Slonim et al., 2006)
extends the information bottleneck theory (Tishby et al.,
2000) to multivariate setting. Given a set of observed
variable X, MIB framework introduced a Bayesian net-
work Gin to define the solution space of latent variables
Z as q(X,Z) |= Gin. Another Bayesian network Gout is
introduced to specify the relevant information to be pre-
served in Z. Then the MIB functional objective is de-
fined as L1

MIB(q) = IGin

q (X) − βIGout

q (X). An alter-
native structural MIB functional objective is defined as
L2
MIB(q) = IGin

q (X) + γD(q(x, z) ‖ Gout), and further
relaxed by (Elidan & Friedman, 2005) as L2

MIB(q, p) =

IGin

q (X)+γDKL(q(x, z) ‖ p(x, z)). We refer to (Friedman
et al., 2001; Elidan & Friedman, 2005) for more details of
MIB theory.

3. Framework
3.1. Preliminaries

Given a datasetD =
{
xd
}|D|
d=1

, we assume that observations
are generated from some random process governed by a
set of latent factors, which could be categorized into two
types: private latent factors U ≡ U1:N ≡ [U1,U2, . . . ,UN ]
and common latent factors Z ≡ Z1:M ≡ [Z1,Z2, . . . ,ZM ].
We use Ui to denote the latent factors that are exclusive
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to the variable xi and assume a jointly independent prior
distribution P (U). We use Z to denote the latent factors that
are possibly shared by some subset of observed variables
and assume a prior distribution P (Z). The dimension of
each Ui and Zj is arbitrary.

3.2. Generative model with explicit dependency
structure representation

Generation model We explicitly model the dependency
structure from Z to X in the random generation process
with a binary matrix variable Mp ≡

[
Mp
ij

]
∈ {0, 1}N×M .

Mp
ij = 1 when the latent factor Zj contributes to the random

generation process of Xi, or otherwise Mp
ij = 0. Let Mp

i =
[Mp

i1,M
p
i2, . . . ,M

p
iM ] denote the i-th row of M. we can

define our generative model pθ(x, z,u) as

pθ(x, z,u) = pθ(z)

N∏
i=1

pθ(ui)
N∏
i=1

pθ(xi | zm
p
i ,ui) (3)

where θ is the parameter for parameterizing the generation
model distribution. The structure of the generation model is
illustrated by Bayesian network Gpfull in Figure 2, where the
structural variable Mp is depicted as the dashed arrows.

Inference We introduce an inference model to approxi-
mate the true posterior distributions. We introduce an-
other binary matrix variable Mq ≡

[
Mq
ij

]
∈ {0, 1}N×M .

Mq
ij = 1 when the observed variable Xi contributes to

the inference process of Zj , or otherwise Mq
ij = 0. Let

Mq
j =

[
Mq

1j ,M
q
2j , . . . ,M

q
Nj

]
denote the j-th column of

Mq . We assume that latent variables are conditional jointly
independent given observed variables. Then we could define
our inference model qφ(x, z,u) as:

qφ(x, z,u) = qφ(x)

N∏
i=1

qφ(ui | xi)
M∏
j=1

qφ(zj | xmq
j )

(4)
where φ is the parameter for parameterizing the inference
distribution. The structure of the inference model is illus-
trated by Bayesian network Gqfull in Figure 2, where the
structural variable Mq is depicted as the dashed arrows.

3.3. Learning from information-theoretic perspective

We motivate our learning objective based on the MIB (Fried-
man et al., 2001) theory. We can define a Bayesian network
Gq ≡ (Vq, Eq) that is consistent with the inference model
distribution qφ(x, z,u) |= Gq according to Mq. A directed
edge from Xi to Ui is added for each i ∈ {1, 2, . . . , N} and
an edge from Xi to Zj is added if and only if mq

ij = 1. Note
that we could omit all edges between observed variables in
Gq as shown in (Friedman et al., 2001; Elidan & Friedman,
2005). A Bayesian network Gp ≡ (Vp, Ep) can be con-

structed according to Mp in a similar way. As introduced
in Eq. 2.4, we have the following structural variational
objective from the MIB theory:

min
pθ|=Gp,qφ|=Gq

L(θ,φ) = IG
q

q + γDKL(qφ ‖ pθ) (5)

The above objective provides a principled way to trade-
off between (i)the compactness of learned latent represen-
tation measured by IGq

q , and (ii)the consistency between
qφ(x, z,u) and pθ(x, z,u) measured by the KLD, through
γ > 0.

We further generalize this objective to enable encoding a
broader class of prior knowledge or desired structures into
the latent space. We prescribe the dependency structure
and conditional independence rules that the learned joint
distribution of (x, z,u) should follow, in the form of a set of
Bayesian networks

{
Gk ≡

(
Vk, Ek

)}
, k = 1, . . . ,K. We

optimize over the inference distributions qφ to make it as
consistent with Gk as possible, measured by its M-projection
to Gk. Formally we have the following constrained optimiza-
tion objective:

min
pθ|=Gp,qφ|=Gq

L(θ,φ) = DKL(qφ ‖ pθ)

s.t. D(qφ ‖ Gk) = 0 k = 1, 2, . . . ,K
(6)

In this way, we impose the preferences over the structure
of learned distributions as explicit constraints. We relax the
above constrained optimization objective with generalized
Lagrangian

max
β≥0

min
pθ|=Gp,qφ|=Gq

L = DKL(qφ ‖ pθ)+
K∑
k=1

βkD(qφ ‖ Gk)

(7)
where β ≡ [β1, β2, . . . , βK ] is the vector of Lagrangian
multipliers. In this work we fix β as constant hyper-
parameters, governing the trade-off between structural regu-
larization and distribution consistency matching. Following
the idea proposed in (Zhao et al., 2018), we could also gen-
eralize the distribution matching loss by using a vector of
T cost functions C ≡ [C1,C2, . . . ,CT ] and a vector of La-
grangian multipliers α ≡ [α1, α2, . . . , αT ]. Each Ci can be
any probability distribution divergence between qφ and pθ,
or any measurable cost function defined over corresponding
samples. Thus we could decompose the overall objective as

L = Ldist + Lstr_reg

Ldist =

T∑
t=1

αtCt(qφ ‖ pθ), α ≥ 0

Lstr_reg =

K∑
k=1

βkD(qφ ‖ Gk), β ≥ 0 .

(8)

By setting C1 = DKL(qφ ‖ pθ) and G1 = G∅, we can
obtain that the original MIB structural variational objective
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in Eq. 5 as a special case. We include the detailed proof in
Appendix. A.1.

3.4. Tractable inference and generation

Though we have our generation and inference model defined
in Sec. 3.2, it’s not clear yet how we practically parametrize
qφ and pθ in a tractable and flexible way, to handle super-
exponential number of possible structures Mp,Mq and effi-
cient inference and optimization.

Inference model We identify the key desiderata of our
inference model defined in Eq. 4 as (i)being compatible
with any valid structure variable Mq and (ii)being able to
handle missing observed variables in q(zj | xmq

j ), in an
unified and principled way. Building upon the assumption
of our generation model distribution pθ in Eq. 3 that all
observed variables X are conditional jointly independent
given Z, we have following factorized formulation in the
true posterior distribution pθ(z | x) by applying Bayes’ rule:

pθ
(
z | xS) = pθ(x

S | z)pθ(z)
pθ(xS)

=
pθ(z)

pθ(xS)

∏
i∈S

pθ (xi | z)

=
pθ(z)

pθ(xS)

∏
i∈S

pθ(z | xi)pθ(xi)
pθ(z)

∝ pθ(z)
∏
i∈S

pθ(z | xi)
pθ(z)

(9)
where S ⊆ {1, 2, . . . , N}. In this way, we established the re-
lationship between the joint posterior distribution pθ(z | x)
and the individual posterior distribution pθ(z | xi). We
adopt the same formulation in our inference model distribu-
tion as qφ(z | xS) ∝ pθ(z)

∏
i∈S

qφ(z|xi)
pθ(z)

, using N individ-
ual approximate posterior distributions qφ(z | xi). In this
work, we assume that pθ(z) and qφ(z | xi) are all follow-
ing factorized Gaussian distributions. And each individual
posterior qφ(z | xi) can be represented as:

qφ(z | xi) =
M∏
j=1

qφ(zj | xi)m
q
ijpθ(zj)

1−mq
ij (10)

where each qφ(zj | xi) is a multiplicative mixture between
the approximated posterior qφ(zj | xi) and the prior pθ(zj),
weighted by mq

ij . Since the quotient of two Gaussian dis-
tributions is also a Gaussian under well-defined conditions,
we could parametrize the quotient qφ(z|xi)

pθ(z)
using a Gaussian

distribution parametrized by q̃φ(z | xi). In this case

qφ(z | xi)
pθ(z)

=

M∏
j=1

qφ(zj | xi)m
q
ijpθ(zj)

1−mq
ij

pθ(zj)
mq

ij+1−mq
ij

=

M∏
j=1

(
qφ(zj | xi)
pθ(zj)

)mq
ij

=

M∏
j=1

(q̃φ(zj | xi))m
q
ij

(11)

where we use a inference network q̃φ(zj | xi) to
parametrize qφ(zj | xi) as qφ(zj | xi) = q̃φ(zj |

xi)pθ(zj). We show our full inference distribution qφ(z |
x) as:

qφ(z | xS) ∝
M∏
j=1

(
pθ(zj)

∏
i∈S

(q̃φ(zj | xi))m
q
ij

)
(12)

which is a weighted product-of-experts (Hinton, 2002) dis-
tribution for each latent variable Zj . We include the de-
tailed derivation in Appendix. A.1. The structure variable
Mq
ij controls the weight of each multiplicative component

q̃φ(zj | xi) in the process of shaping the joint posterior dis-
tribution qφ(z | x). As a result of the Gaussian assumptions,
the weighted product-of-experts distribution above has a
closed-form solution. Suppose pθ(z) ∼ N (µ0,diag (σ0)),
q̃φ(z | xi) ∼ N (µi,diag (σi)) for i = 1, 2, . . . , N . We
introduce "dummy" variables in mq that mq

0j = 1 for all j.
Then we have

qφ(z | xS) ∼ N (µq,diag (σq))

1

σqj
=

∑
i∈S∪{0}

mq
ij

σij
µqj =

1

σqj

∑
i∈S∪{0}

mq
ij

σij
µij .

(13)

With the derived inference model above, we are now able to
model 2N posterior inference distributions qφ(z | xS) ∀S,
coupled with 2N×M possible discrete structures Mq, with
N inference networks q̃φ(z | xi). Note that the introduced
distribution qφ(z | x) remains valid when we extend the
value of structure variable Mq to continuous domain RN×M ,
which paves the way to gradient-based structure learning.

Generation model We could parametrize our generation
model pθ in a symmetric way using the weighted product-of-
expert distributions using pθ(xi | zj) and Mp. In this work
we adopt an alternative approach, due to the consideration
that the Gaussian distribution assumption is inappropriate
in complex raw data domain, like image pixels. We instead
use Mp as a gating variable and parametrize pθ(xi | zm

p
i )

in the form of pθ(xi | zm
p
i ) = pθ(xi | z�mp

i ), where �
denotes element-wise multiplication. We can see that it’s
still tractable since the prior pθ(z) is known.

3.5. Tractable optimization

Structural regularization Lstr_reg Let’s take a close
look at the structural regularization term Lstr_reg in our
training objective Eq. 8. As introduced in Sec.2.4,
we have D(qφ ‖ Gk) =

∑
v∈{x,z} Iq(v ; PaG

q

v ) −∑
v∈{x,z} Iq(v ; PaG

k

v ). This objective poses new chal-
lenge to estimate and optimize mutual information. Note
that any differentiable mutual information estimations and
optimization methods can be applied here. In this paper, we
propose to use tractable variational lower/upper-bounds of
the intractable mutual information by re-using distributions
qφ and pθ. We refer to (Poole et al., 2019) for a detailed
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Algorithm 1 Training with optional structure learning

Require: dataset D =
{
xd
}|D|
d=1

Require: parameters φ,θ,ρq,ρp

Require: Bayesian Networks
{
Gk ≡

(
Vk, Ek

)}
Require: hyper-parameters α, β
Require: number of iterations to update distribution param-

eters steps_dist > 0
Require: number of iterations to update structure parame-

ters steps_str ≥ 0
Require: mini-batch size bs
Require: gradient-based optimizer opt

initialize all parameters φ,θ,ρq,ρp

repeat
for step = 1 to steps_dist do

randomly sample a mini-batch B of size bs from
dataset D
evaluate loss LBdist using Eq. 8
compute gradients∇φLBdist, ∇θLBdist
opt.optimize([φ,θ] ,

[
∇φLBdist,∇θLBdist

]
)

end for
for step = 1 to steps_str do

randomly sample a mini-batch B of size bs from
dataset D
evaluate loss LBscore using Eq. 15
compute gradients∇ρqLBscore,∇ρpLBscore
opt.optimize([ρq,ρp] ,

[
∇ρqLBscore,∇ρpLBscore

]
)

end for
until converged

review and discussion of state-of-the-art tractable mutual
information optimization methods.

Distribution consistency Ldist We aim to achieve the
consistency between the joint distribution qφ(x, z,u) and
pθ(x, z,u) through T cost functions in Ldist. With the
proposed inference model in Sec. 3.4, we could decom-
pose our Ldist into two primary components: (i) Enforcing
qφ(x, z,u) = pθ(x, z,u) Many previous works(Kingma
& Welling, 2014; Tolstikhin et al., 2018; Dumoulin et al.,
2017; Donahue et al., 2017) have been proposed to learn
a latent variable generative model to model the joint dis-
tribution, any tractable objective can be utilized here, we
adopt the ELBO as the default choice. (ii) Enforcing
qφ(z) = pθ(z) The reason that we explicitly include this
objective in Ldist is due to our pθ-dependent parametriza-
tion of qφ(z | x) ∝ pθ(z)

∏N
i=1

qφ(z|xi)
pθ(z)

. Thus we explic-
itly enforce the consistency between the induced marginal
distribution qφ(z) ≡ Eqφqφ(z | x) and pθ(z). Tractable
divergence estimators for minimizing CT (qφ(z) ‖ pθ(z))

Table 1. Distribution consistency objectives Ldist

C definition

C0(x, z,u) DKL(qφ ‖ pθ)
C1(x,u) −LELBO(qφ(x,u), pθ(x,u))
C2(x) DJS(qφ(x) ‖ pθ(x))
C3(z) DKL(qφ(z) ‖ pθ(z))

C4(xi, z) DKL(qφ(xi, z) ‖ pθ(xi, z))

have been proposed and analyzed in previous works,

Ldist =

T−1∑
t=1

αtCt(qφ ‖ pθ) + αTCT (qφ(z) ‖ pθ(z)) .

(14)

With the distribution consistency objective and the compo-
sitional inference model introduced in Sec. 3.4, we could
train the latent variable generative model in a weakly/semi-
supervised manner in terms of (i) incomplete data where
X is partially observed (e.g. missing attributes in feature
vectors, or missing a modality in multi-modal dataset), and
(ii) partial known dependency structure in Mq and Mp.

Structure learning In this work, we show that our pro-
posed framework is capable of learning the structure of
Bayesian network Gq and Gp based on many existing struc-
ture learning methods efficiently, with gradient-based opti-
mization techniques, which avoids searching over the dis-
crete super-exponential space. Specifically, we show that
our proposed framework can (i) represent the assumptions
made about the structure of the true data distribution in
the form of a set of structural regularization in the form of
Bayesian networks {Gk} as the explicit inductive bias. A
score-based structure learning objective is then introduced
where Lstr_reg plays a vital role in scoring each candidate
structure; and (ii) utilize the non-stationary data from multi-
ple environments (Hyvärinen et al., 2019; Arjovsky et al.,
2019; Ke et al., 2019) as additional observed random vari-
ables. We show the score-based structure learning objective
as below

min
mq,mp

Lscore = Ldist + Lstr_reg + Lsparsity . (15)

We assume a jointly factorized Bernoulli distribution prior
for structure variable Mq and Mp, parametrized by ρq

and ρp. We use the gumbel-softmax trick proposed by
(Jang et al., 2017; Maddison et al., 2017; Balog et al.,
2017) as gradient estimators. Following the Bayesian
Structural EM (Friedman, 1998; Elidan & Friedman, 2005)
algorithm, we optimize the model alternatively between
optimizing distributions L(qφ, pθ) and structure variables
Lscore(m

q,mp). We present the full algorithm to train the
proposed generative model with optional structure learning
procedure in Alg. 1.
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Table 2. A unified view of {single/multi}-{modal/domain/view} models. Ci is referred to as the definition in Table. 1, G is referred to as
the Bayesian networks in Figure. 1, 2. We use N to denote the number of views/domains/modals. We use 1© to denote shared/private
latent space decomposition, and use 2© to denote dependency structure learning. Please see Appendix. A.1 for the full table.

MODELS N 1© 2© Gq Gp Ldist Lstr_reg

VAE 1 × ×
[
Gqsingle

] [
Gpsingle

]
[1, C1] []

GAN 1 × × [] Gpsingle [1, C2] []

INFOGAN 1 × × [] Gpsingle [1, C2] [1,GInfoGAN]

β-VAE 1 × ×
[
Gqsingle

] [
Gpsingle

]
[1, C1], [β − 1, C3] [β − 1,G∅]

β-TCVAE 1 × ×
[
Gqsingle

] [
Gpsingle

]
[1, C1], [α2, C2] [β,Gp]

JMVAE 2 × ×
[
Gqjoint

] [
Gpjoint

]
[1, C1] [βi,Gstrcross(xi)]

MVAE N × ×
[
Gqjoint,G

q
marginal

] [
Gpjoint

]
[1, C1] [βi,Gstrmarginal(xi)]

WYNER 2 X ×
[
Gqjoint,G

q
marginal

] [
Gpjoint

]
[1, C1] [βi,Gstrcross(xi)], [βi,Gstrprivate(xi)]

OURS-MM N X X [Gqfull] [Gpfull] [1, C0] [βi,Gstrcross({xi})]

4. Case study: Generative Data Modeling
In this section, we show various types of generative data
modeling can be viewed as a structured latent space learning
problem, which can be addressed by our proposed frame-
work in a principled way.

x

Uj

M

x

Uj

M

x

Uz Uc

Gqsingle Gpsingle Gstrinfo

Figure 1. Bayesian networks for single-modal models

4.1. Single-modal generative model

Framework specification In single-modal data generative
modeling setting, we have N = 1 observed variable X ≡
[X1] which could be in image, text or other modalities, and
we only incorporate private latent variables U. We abuse
the notation a little by assuming M latent variables U ≡
[U1,U2, . . . ,UM ]2.

A unified view We show that our proposed model unifies
many existing generative models. We show that we can
impose disentanglement as a special case of the structural
regularization in latent space to obtain different existing
disentangled representation learning methods. We summa-

2because we can define arbitrary dimension for U.

rize how existing generative models can be unified within
our proposed information-theoretic framework in table 2.
As an interesting example, we show that we can derive
the β-vae objective with L = C1 + (β − 1)C3 + (β −
1)Lstr_reg(G∅), where we impose the structural regulariza-
tion (β − 1)D(qφ ‖ G∅). In this way, we also established
connections to the results in (Hoffman et al., 2017; Math-
ieu et al., 2019) that β-vae is optimizing ELBO with a
qφ-dependent implicit prior r(u) ∝ qφ(u)

1−βpθ(u)
β , we

achieve this in a symmetric way by using a pθ-dependent
posterior qφ(z | x) ∝ pθ(z)

∏N
i=1

qφ(z|xi)
pθ(z)

. We further
show that how we can unify other total-correlation based
disentangled representation learning models (Chen et al.,
2018; Esmaeili et al., 2019; Kim & Mnih, 2018) by ex-
plicitly imposing Bayesian structure Gp as structural regu-
larization. We include detailed discussions and proofs in
Appendix. A.2.

4.2. Multi-modal/domain/view generative model

Problem setup We represent the observed variables as
X1:N ≡ [X1,X2, . . . ,XN ], where we have N observed vari-
ables in different domains3 and they might be statistically
dependent. We thus aim to learn latent factors Z that ex-
plains the potential correlations among X. Meanwhile, we
also learn latent factors Ui that explains the variations ex-
clusive to one specific observed variable Xi. In this way, we
could achieve explicit control over the domain-dependent
and domain-invariant latent factors. For more details of the
data generation process for this task and the model, please
see Appendix. B.1.

3We use the word domain to represent domain/modality/view.
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Figure 2. Bayesian networks of various inference, generation mod-
els and structural regularizations in multi-modal/domain/view set-
ting.

A unified view We summarize the key results of unifying
many existing multi-domain generative models in Table. 2.
We prove and discuss some interesting connections to re-
lated works in more details in Appendix. A.3, including
BiVCCA (Wang et al., 2016), JMVAE (Suzuki et al., 2017),
TELBO (Vedantam et al., 2018), MVAE (Wu & Goodman,
2018), WynerVAE (Ryu et al., 2020), DIVA (Ilse et al.,
2019) and CorEx (Steeg & Galstyan, 2014a;b; 2016; Gao
et al., 2019).

Framework specification We present a specific implemen-
tation of our proposed framework for multi-domain gen-
erative modeling here. We show that it generalizes some
heuristics used in previous models and demonstrate its ef-
fectiveness in several standard multi-modal datasets. We
use Ldist in Table 1 to learn consistent inference model
and joint, marginal, conditional generation model over
(X,Z,U). To embed multi-domain data into a shared la-
tent space, we use the structural regularization that en-
forces Markov conditional independence structure XS →
Z → XS{ . This structural regularization can be repre-
sented by Gstrcross in Figure 2, where X ≡

[
XS,XS{

]
is a

random bi-partition of X. Then we show that the objec-
tive can be upper-bounded by L = Ldist + Lstr_reg ≤
Lx + Lu + Lz, where Lx = −Eqφ(z,u|x) log pθ(x | z,u),
Lu = Eqφ(x)DKL(qφ(u | x) ‖ pθ(u)) and Lz =∑N
i=0 Eqφ(x)DKL(qφ(z | x) ‖ qφ(z | xi)). We use

qφ(z | x0) ≡ pθ(z) for the simplicity of notations. We
further show that for each latent variable Zj , Lzj term can
be viewed as a generalized JS-divergence (Nielsen, 2019)
among qφ(zj | xi) for i ∈ {1, . . . , N} using geometric-
mean weighted by mq

j , which can be seen as a generaliza-
tion of the implicit prior used in β-vae as discussed in 4.1.
The detailed proof is presented in Appendix. A.3.

Lzj
= D

mq
j

JS (qφ(zj | x0), qφ(zj | x1), . . . , qφ(zj | xN ))
(16)

SVHN→MNIST MNIST→MNIST-Plus-1

Figure 3. Cross-domain generation samples. The leftmost column
shows conditioned inputs.

Experiment We validate the effectiveness of proposed
model in multi-view/modal data modeling setting on bi-
modal MNIST-Label, MNIST-SVHN and bi-view MNIST-
MNIST-Plus-1 dataset. We show the generated samples in
Figure 3. The left panel in the figure contains the examples
of MNIST-style samples generated by the model trained on
MNIST-SVHN dataset when conditioned on SVHN data
examples. We can observe that the model is using the shared
latent variable Z and private latent variables U to success-
fully generate the MNIST-style samples of same digit as
the SVHN inputs. On the other hand, the right panel con-
tains the examples of MNIST-style sample generated by the
model trained on MNIST-Plus-1 dataset by conditioning on
MNIST example. We can observe that the model is suc-
cessfully generating m+ 1 digit images when conditioned
on m digit input. More detailed results are included in the
Appendix. B.1.

5. Case study: Fair Representation Learning
In this section, we show that fair representation learning
can be viewed as a structured latent space learning problem,
where we aim to learn a latent subspace that is invariant to
sensitive attributes while informative about target label.

Problem setup We use [X,A,Y] to represent the observed
variables, where the variable X represents the multivariate
raw observation like pixels of image sample, the variable
A represents the sensitive attributes, and the variable Y
represents the target label to be predicted. Following the
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Figure 4. Bayesian networks for fair representation learning.

Table 3. Fair representation learning results on German and Adult
datasets.

MODEL ADULT GERMAN
ACC DEO ACC DEO

NAIVE SVM 0.80 0.09 0.74± 0.05 0.12± 0.05
SVM 0.79 0.08 0.74± 0.03 0.10± 0.06
NN 0.84 0.14 0.74± 0.04 0.47± 0.19
NN +χ2 0.83 0.03 0.73± 0.03 0.25± 0.14
FERM 0.77 0.01 0.73± 0.04 0.05± 0.03
OURS-MMD 0.83 0.02 0.72± 0.07 0.07± 0.09
OURS-TC 0.81 0.02 0.74± 0.08 0.08± 0.14
OURS-MINE 0.79 0.01 0.70± 0.11 0.05± 0.11

same setting in previous works (Song et al., 2019; Creager
et al., 2019), the target label is not available during training
phase. A linear classifier using learned representation is
trained to predict the held-out label Y in testing time. We
focus on the Difference of Equal Opportunity (DEO) notion
in this work (Hardt et al., 2016). For the details of the data
generation process, please see Appendix. A.4.

Framework specification we learn a joint distribution over
[X,A,Z,U] with the framework proposed. The shared latent
variable Z aims to explain the hidden correlation among X
and Z. We also enforce two structural regularizations, repre-
sented by two Bayesian networks Gstrinvariant and Gstrinformative.
The aim of Gstrinvariant is to learn the private latent variables
Ux as the hidden factors that are invariant to the change
of Z. Meanwhile, the aim of Gstrinformative is to preserve as
much information about X in Z. Mq and Mp are illustrated
by Gq and Gp in Figure 4 correspondingly. Then we have
the following learning objective

L ≤ −Eqφ log pθ(x,a | z,u) + β2Iq(z ; u)+

(1 + β1)EqφDKL(qφ(z | x,a) ‖ pθ(z)) + const
(17)

Please refer to Appendix. A.4 for the detailed derivation and
discussion.

Experiments We investigate the performance of our derived
objective on the UCI German credit dataset and the UCI
Adult dataset. For estimating and minimizing Iq(z ; u),
we adopted MMD (Gretton et al., 2006), total-correlation
estimator in (Esmaeili et al., 2019) and MINE (Belghazi
et al., 2018) and summarize all results in Table 3. We report
the classification accuracy (ACC) and the aforementioned

DEO in the table. The performances of all other baseline
methods in the table are from (Mary et al., 2019; Donini
et al., 2018). Please refer to Appendix. B.2 for more details.

6. Case study: Out-of-Distribution
Generalization
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Figure 5. Bayesian networks for out-of-distribution generalization
task. E in the diagram represents the index of the environmental
factor, not the real value of E in the data generation process

Problem setup We show that discovering of true causa-
tion against spurious correlation through invariance can be
viewed as a structured latent representation learning prob-
lem. Consider a set of environments E indexed by E, we
have a data distribution P e(X,Y) for each environment
E = e. We use [X,Y,E] to represent the observed variables,
where X is data input, Y is label and E is the index of the
corresponding environment index. The goal of this task is
predict Y from X in a way that the performance of the pre-
dictor in the presence of the worst E is optimal. We derive
an information-theoretic objective for out-of-distribution
generalization task on Colored-MNIST dataset introduced
in (Arjovsky et al., 2019). For more details of this experi-
ment, please see the Appendix. B.3 as well as the original
work (Peters et al., 2015; Arjovsky et al., 2019).

Framework specification As our structural regularization,
we use the Bayesian network Gstrood in Figure 5. The purpose
of Gstrood is to enforce that Z is sufficient statistic in making
the prediction of Y and that E ⊥ Y |Z. We present the
derived learning objective here

Linfo = Ldist + β1DKL(qφ(z | x, e,y) ‖ qφ(z | x))+
β2Iq(x, e,y | z)

(18)
We further show that the idea in (Arjovsky et al., 2019)
can be directly integrated into our proposed framework by
imposing stable Mp structure as constraints across envi-
ronments, measured by gradient-penalty, as discussed in
Appendix. A.5.

Experiments We validate the proposed model on the
Colored-MNIST classification task introduced in (Arjovsky
et al., 2019). We also take the advantage of our pro-
posed framework as a generative model that we could per-
form semi-supervised learning, where we use only 50%
labeled data. We include more training setting details in Ap-
pendix. B.3. We compare our model against the baselines in
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Table 4. Out-of-distribution generalization results on Colored-
MNIST

MODEL ACC. TRAIN ENVS. ACC. TEST ENV.

RANDOM 50 50
OPTIMAL 75 75
ORACLE 73.5± 0.2 73.0± 0.4
ERM 87.4± 0.2 17.1± 0.6
IRM 70.8± 0.9 66.9± 2.5
OURS-FULL 67.8± 6.8 62.1± 6.1
OURS-SEMI 71.4± 6.1 58.7± 7.2

Table 4. We see that our proposed information-theoretic ob-
jective achieves comparable performance in both supervised
and semi-supervised setting on the test-environment.

7. Conclusion
In this work, we propose a general information-theoretic
framework for learning structured latent factors from mul-
tivariate data, by generalizing the multivariate information
bottleneck theory. We show that the proposed framework
can provide an unified view of many existing methods and
insights on new models for many different challenging tasks
like fair representation learning and out-of-distribution gen-
eralization.
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