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Abstract—Speaker diarization determines ‘“who spoke when”
from the recorded conversations of an unknown number of people.
In general, we have no a priori information about the number,
the locations, or even the characteristics of the speakers. Addi-
tionally, speakers’ speech utterances vary dynamically because
of turn-taking during the conversations. These conditions make
the speaker-clustering task extremely difficult. The problem be-
comes even harder if online (incremental) processing is required.
In this paper, we formulate the speaker-clustering problem as
the clustering of the sequential audio features generated by an
unknown number of latent mixture components (speakers). We
employ a probabilistic model that assumes time-sensitive speaker
mixtures at every time frame, which, surprisingly, suits the di-
arization scenario. We combine the time-varying probabilistic
model with direction of arrival (DOA) information calculated from
a microphone array in a bag-of-words (BoW)-style feature repre-
sentation. The proposed system effectively estimates the number
and locations of the speakers in an online manner based on the
standard Bayes inference scheme. Experiments confirm that the
proposed model can successfully infer the number and features
of speakers and yield better or comparable speaker diarization
results compared with conventional methods in several datasets.

Index Terms—Bag-of-words (BOW), clustering, direction of ar-
rival (DOA), latent Dirichlet allocation (LDA), speaker diarization,
microphone arrays, variational Bayes inference.

I. INTRODUCTION

HE automatic indexing of multi-party conversations such
T as group meetings has been studied intensively because it
can allow their rapid retrieval from archives, automatic minutes
taking, and automatic speech enhancements in conversations.
Many multi-party conversations have been recorded in relation
to, for example, Augmented Multi-party Interaction with Dis-
tant Access (AMIDA) [1], Computers in the Human Interaction
Loop (CHIL) [2], and the NIST Rich Transcription Meeting
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Recognition Project [3]. Also, a number of methodologies for
this problem have been proposed [4]-[6]. One essential func-
tion for indexing such recorded data is speaker diarization, i.e.,
estimating “who spoke when” from audio recordings [7]-[9].
A speaker diarization system estimates the speaker segment
boundaries by classifying speech features, such as acoustic
and/or location features.

A key issue of speaker diarization is speaker clustering:
clustering the features into an unknown number of clusters
(speakers). As features, acoustic and location information are
widely employed. The former is the mel-frequency cepstral
coefficient (MFCC) features, which were used in [10], for
example. MFCC features are so strong that we are able to
discern the speakers very precisely if we can capture the sole
clean utterances of each speaker in a stable manner. Friedland
and Vinyals [11] proposed a very fast diarization system. In
this paper, MFCC features were effectively combined with
a Gaussian mixture model (GMM) model. However, MFCC
features tend to be degraded by environmental noise and the
overlap in different speakers’ utterances. This is inconvenient
for the speaker diarization task, where we expect the system to
recognize complex dialogs with many overlaps in various envi-
ronments. The latter, those adopted by this paper, are related to
the location information of the speakers, including time differ-
ence of arrival (TDOA) or direction of arrival (DOA), estimated
via microphone arrays. DOA-based diarization, which requires
that the speakers do not move during the conversation, is robust
against voice overlap, and this is highly desirable for speaker
diarization in meeting situations. Some papers [8], [12] suc-
cessfully combined MFCC and TDOA features for diarization.
However, the use of solely TDOA or DOA features also has
been proven to be useful in speaker clustering and diarization
tasks [13], [14]. In this paper, we determine the relative time
difference of sound signal arrival between microphone pairs of
a microphone array following [13].

In most cases, we have no a priori information about the
number, the locations and the characteristics of the speakers.
We also note that online (incremental) clustering is necessary
for some applications. For example, in the teleconference
system we need instant speaker diarization for better speech
enhancements of the speaker. Instant speaker diarization is
also required for human—computer interface situations such
as robots serving many persons. In both cases, participants in
the conversation may vary every moment, and the overlapping
of utterances makes the problem even more difficult. The
diarization system needs to solve these problems on-site; thus,
online clustering is an important issue. It is evident that we
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cannot employ simple mixture models such as the GMM,
whose mixing ratio is fixed for all time frames, because the
“mixture” of speakers’ speech fragments is time sensitive due
to turn-taking during the conversations.

In this paper, we adopted the new probabilistic model called
dynamic Latent Dirichlet Allocation (dLDA), which was pro-
posed in [15]. Employing dLDA enables us to incorporate the
dynamic properties of the conversation, especially turn-taking,
into the model to represent time-frame-sensitive audio feature
distribution. The model formulates time-varying speaker mix-
tures as a simple Markov model that depends on the previous
time frame. Thanks to this time-varying nature of the dLDA
model, the proposed model can effectively estimate the number
of speakers participating in the conversation by clustering loca-
tion information. We also incorporate a bag-of-words (BoW)-
style feature representation for audio signal processing, which
is attracting a lot of attention in other research fields such as nat-
ural language processing and computer vision. To utilize a BoW
representation in DOA-based speaker diarization, we propose
replacing the standard Dirichlet-Multinomial model [15], [16]
with a Gaussian mixture model as in our previous research [17].
We validate the performance of the dLDA model with quanti-
tative and qualitative experiments, compared with conventional
speaker diarization techniques.

In Section II, we give an overview of the proposed system
and related works in the literature. In Section III, we use the
probabilistic representation to describe the speaker-clustering
problem and compare several mixture models. In Section IV,
we introduce the dLDA model for speaker clustering. Section V
describes the Bayesian inference algorithm. Section VI presents
the experiments and the results, which confirm the superiority
of the proposed model. Section VII concludes this paper.

II. SYSTEM OVERVIEW AND RELATED WORKS

Fig. 1 gives an overview of a typical DOA-based speaker di-
arization system. A sound recording of a conversation held by
an unknown number of speakers is given to the system as a se-
quence of time frames. We then extract features for speaker clus-
tering from the sequence of frames.

Our model is a combination of two feature extractors (pre-
processors). The first, called voice activity detector (VAD) [18],
computes the probability of a frame containing any voice. If this
probability is low, the frame is assumed to be a noise frame,
i.e., an environmental noise, and is excluded from further pro-
cessing. The second, and main extractor, is DOA. We utilize the
DOA extractor proposed in [19]. This feature extractor estimates
1) the direction (angle) of the sound source from a microphone
array and 2) the power of the sound heard from that direction.
We expect that many high-power vocal signals will be emitted
from the locations of the speakers (see Appendix for details).

Given the sequence of DOA features (power-orientation fea-
tures from frames), the clustering processor infers the number
and locations of the speakers. In the last step, the classification
processor determines the utterance status of each speaker at each
time based on the clustering results.

As discussed earlier, clustering is the most challenging part.
We briefly review the clustering techniques used in previous
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models and clarify their problems. In [13], the authors pro-
posed a real-time (online) diarization system based on DOA
features. They employed a simple online clustering technique
called leader-follower clustering [20]. This algorithm is simple
and fast, but has an apparent drawback in that the clustering
result strongly depends on a time-independent threshold that
is difficult to optimize a priori. In [14], Bayesian information
criteria (BIC) is used to find the optimal number of clusters.
The algorithm finds the optimal number by comparing the BIC
scores before and after merging any two clusters. It requires the
computation of BIC improvements for every possible merge,
so the computation load increases exponentially.

In this paper, we seek yet another interpretation of the
speaker clustering problem, which naturally captures the
nature of meeting conversations, based on speaker location
information.

III. NAIVE MODELING BY MIXTURE MODELS

In this paper, we study three mixture-based models: GMM,
LDA, and dLDA. First, we examine GMM and LDA, which
are less complicated than the dLDA model. We introduce the
probabilistic representations of these two, and study the weak
points of these models. In the next section, we introduce dLDA
to overcome the problems.
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A. Bag-of-Words Representations

Throughout this paper, we adopt the BoW feature represen-
tation. BoW approaches first appeared in natural language pro-
cessing and information retrieval research. BoW is a simple
representation of documents, each of which consists of many
words, that can handle high (thousands) cardinality orders. We
consider a dataset that is a collection of documents. BoW repre-
sentation describes a document by a histogram of words: aggre-
gate of the counts of word appearance regardless of the order of
words in the sentences. Identifying the word histogram (or a dis-
tribution), we can easily analyze the contents of a document, and
this is useful for document handling such as search and abstrac-
tion. Though this representation is very simple, BoW is known
as a powerful technique for document analysis. These days,
other research fields such as computer vision (e.g., [21]-[25]),
and very recently audio and acoustics processing [26], employ
BoW combined with the topic model, which we will discuss
later in this section.

In this paper, we work on the BoW representation for speaker
clustering and diarization based on speaker location informa-
tion. A conversation recording is a collection of time frame-wise
observations. Every time frame contains a set of information
about multiple speakers’ locations. We interpret this data struc-
ture as a variant of BoW representation. A series of consecutive
time frames (possibly one time frame) is considered as a doc-
ument. Every document consists of a set of location informa-
tion; therefore, speaker location information serves as a word
in documents. We analyze the location word histogram and try
to reveal “who spoke” in the given document. Repeating this
analysis over all documents, we can identify “who spoke when”
from a conversation recording.

BoW is, in essence, discrete feature representation: counts of
word tokens. Therefore, we first quantize the original features
into discrete tokens, which serve as “words.” If we quantize
a visual feature such as SIFT [27], the quantized features are
called “visual words.” Similarly, we consider “angle words” in
this paper.

The audio feature used in this paper is DOA. We assume
meeting situations in which the speakers remain seated around
a table, i.e., do not move during the meeting. We put an array
of three microphones on the table and represent the locations of
the speakers by angles from a reference direction. DOA features
are D = 360 dimensional power vectors:

o= (ft,—179: - - fr,180) - (D

Each f; 4 denotes the estimated signal power from direction
(angle) d(deg) at time ¢. For details, please see the Appendix.

In accordance with the BoW representation, we convert DOA
feature f, into a set of discrete words z; = {z,; € R'} as
in Fig. 2. From each d € {—179,...,180}, multiple samples
x; = d/360 are reproduced. The division by 360(deg) is for
normalization purposes. The number of words, n; 4, is propor-
tional to f; 4. Going through this conversion from d = —179 to
d = 180, we have

xt:{wt,i}v 1= 1,2,...,7’145, (2)
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Fig. 2. Bag-of-Angle words representation of observations. We quantize the
observed DOA powers into discrete “word” samples x; ;.
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Now we have angle “words.” Next, we define a document.
In this paper, we merge some consecutive time frames as one
document (frame document). Each document has its own word
histogram, which summarizes all angle word occurrences in the
time frames within the document. The merging process serves
to smooth document-word distributions (the histogram) among
documents and to aid computational efficiency.

Finally, each frame document is represented by ‘“Bag-of-
Angle words.” Hereafter, we slightly abuse notations. An index
t refers to the time index of the frame documents. We have n;
“angle words” for the frame document ¢. Each word (a sample)
x4 ,; denotes the angle of the speech fragment. The distribution
(or, histogram) of x; ; reflects the power-oriented distribution
at time ¢. Because human voices have large power (large f; 4),
a sample concentration indicates the location of a speaker.
Therefore, we can estimate the locations of the speakers by
clustering these samples, namely angle words.

B. Gaussian Mixture Model

Standard mixture models are among the most popular statis-
tical models for clustering, especially the GMM. Araki et al.
[28] studied the use of GMM for a batch (offline) speaker clus-
tering scenario, which is not our goal. We explain how GMM
can be used in a fully probabilistic manner for online speaker
clustering for BoW representation.

In this paper, speaker clustering is understood as the online
clustering of observed sample set (BoW) X1, = {x1,...,2¢}.
We hope to partition z; ; into clusters. Each cluster corresponds
to a speaker, and latent parameter # represents the location of
the speaker. Samples x; ; are generated from observation func-
tion F'(#). We would like to infer the number of speakers, and
their locations. This is equivalent to finding the optimal number
of clusters and their parameters ¢, and assigning =, ; to each
cluster.
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Fig. 3. Graphic models of the three mixture models. Circle nodes are random variables and square nodes are the constants. Shaded nodes denote the observed
values, and rounded rectangular “plates” are the repetitions. Arcs indicate the probabilistic dependencies between variables. (A) GMM, (B) LDA, and (C) dLDA.

It may be that this process can be tackled by an ordinary
GMM. Usually, BoW indicates that the observation distribu-
tion is a multinomial distribution [16]. This is because words
(natural language words) are discrete symbols. However, each
angle-word = ; is a continuous real value. Therefore, in this
paper we adopt the Gaussian prior as the distribution of z ;,
which makes the model a GMM with BoW (angle words). Each
cluster corresponds to a Gaussian parameterized by §. We as-
sume K mixtures of Gaussians, and formulate the distribution
of x;; as follows:

K
p(ei) =Y BN (w;0) )
k=1

where 0, = (ug, o) is the parameter of the kth cluster. piy, is
the mean, and oy, is the variance of the kth Gaussian. 3}, is the
mixing ratio of Y, fr = 1.

For simplicity and clarity of later discussions, we describe
GMM in another but equivalent way. We introduce a hidden as-
signment variable z; ; = k € {1,2,..., K}. z;; is a mixture as-
signment variable for observed word z, ;; it indicates the cluster
that generated z, ;. We assume z;; is a K -dimensional binary
vector, whose elements equal zero except for the element of 1.
Without confusion, we write z; ; = k, meaning the kth element
of the vector z; ; , = 1; the others are zero.

z¢,; 1s a random variable that distributes proportional to the
mixing ratio vector 8 = (1, B2, - .., OK).

Also assuming the prior distribution on 3, we have the fol-
lowing fully probabilistic GMM model for speaker clustering:

p (B) = Dirichlet (e) ®)
P (2¢,:|8) = Multinomial (8) (6)
p ($t,i|zt,7‘,, {Hk}) =N (Hzt,i) . (7

a is a K-dimensional hyperparameter for the Dirichlet distri-
bution. The graphical model of the above GMM is shown in
Fig. 3(a). In the figures, circle nodes represent the random vari-
ables, and square nodes indicate constants. The shaded nodes
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Fig. 4. Result of speaker cluster estimation by GMM model (ground truth: four
speakers). Each cluster (Gaussian) is assumed to be a speaker. The horizontal
axis is the angle value (normalized from —0.5 to 0.5).

are the observed data (angle words), and rounded rectangular
“plates” denote repetition with respect to the indices below.

This simple GMM set up is easy to understand, and seems
well suited to the speaker clustering problem: running this
model includes inferring assignments z; ;, which indicate the
clustering of the observations into K mixtures. Given these
clustering assignments, we can easily infer the parameter of the
kth speaker cluster (mixture) parameter 6, and its mixing ratio
B

Now we present one part of the results of the experiments for
better understanding. We build the above model, and estimate
all unknown variables (2 ;, Bk, and 6;) by Bayesian inference
(discussed in the “Inference” section). Inference is performed in
an online manner: we iterate the inference process every time the
bag-of-angle words of z;, a new frame document, is received.
Fig. 4 shows the final results of the GMM estimation for four-
speaker conversation data. As you can see, GMM yields many
more clusters than there are speakers (four); it fails to estimate
the number of speakers (clusters).
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Fig. 5. Ilustration of GMM model for speaker clustering in diarization tasks.
Time-invariant mixture G is assumed to represent time-varying observation
x+, which reflects turn-taking.

This result is disappointing but understandable because a
simple GMM cannot deal with the dynamics of conversations.
Choosing GMM for speaker clustering is equivalent to as-
suming a time-invariant mixture model in the parameter space:

K
0) = Brbe, (6) ®)
=1

where 0y, is a delta function that peaks at ;. Since each pa-
rameter corresponds to a speaker, GMM assumes a time-in-
variant speaker mixture for any conversation. We can see this
in Fig. 3(a) as we have only one  node, located outside of the
repetition plate. However, the actual distribution at each time
is time-varying because of “turn-taking,” i.e., the number of
speakers who produce speech at time ¢ is not constant. Sup-
pose we have a conversation of three speakers, and at time ¢
only one person speaks. The distribution at ¢ differs from the
time-invariant distribution, which suits three speakers’ observa-
tions. We illustrate this problem in Fig. 5.

Hereafter, we use the term “turn-taking” with a more general
meaning. By turn-taking, we mean the changes of speaker pro-
portions along the timeline caused by a speaker’s beginning and
end of one utterance. These changes will be induced not only by
speaker changes (strict meaning of turn-taking), but also by an
intermittent monologue that contains several switches between
silent and speech periods.

Next, we extend a simple GMM to a more powerful proba-
bilistic model, namely LDA.

C. Latent Dirichlet Allocation

We can instead employ the Latent Dirichlet Allocation (LDA)
model [16], which is a famous BoW representation model orig-
inally designed for text data. In the LDA model, we have a set
of K latent mixture components called “topics.” Each topic is
characterized by its own word distribution. A document is rep-
resented as a mixture of topics, and each observed word in the
document is generated from one of the topics.

This LDA scheme is readily applicable to our speaker clus-
tering problem. Topic components correspond to speakers rep-
resented as Gaussians with location parameters f, time intervals
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Fig. 6. Result of speaker cluster estimation by LDA model (ground truth: four
speakers). Each cluster (Gaussian) is assumed as a speaker. The horizontal axis
is the angle value (normalized from —0.5 to 0.5).

t to documents, and samples x; ; to words. Analogous to the
GMM model [(5)—(7)], we can formalize a speaker clustering
model with LDA as follows:

p (B:) = Dirichlet (a) 9)

p (21,:|B+) =Multinomial (B;) (10)
p (l’t,i|Zt,i7 {gk}) =N (Hz“-) . (11)

The graphical model of LDA is shown in Fig. 3(b). The
main difference from a simple GMM is that the mixing ratios
of topics (clusters) are time-variant. The mixing ratio vector at
the ¢th frame document is denoted as B; = (Bi.1,..-,0t.K)
in (9) OB = 1). By is located inside of the ¢-plate in
Fig. 3(b). This indicates that B3, is variable over time; therefore,
we can freely represent time-varying speaker mixtures due to
turn-taking. Equation (12) represents the way LDA models the
parameter mixture behind the conversation observation:

=" Brxbo, (6)
k

In the above equation, the mixture is defined by time-varying
mixing ratio 3; . This means that LDA allows the parameter
mixture to change over time, and this feature enables LDA to
treat turn-taking during conversations in a more reasonable and
natural way.

As in the discussion of GMM, we present the results of an ex-
periment on LDA for elucidation. The same four-speaker dataset
was tested by LDA, and the result is presented in Fig. 6. As can
be seen, LDA performs better than GMM in terms of the es-
timated number of clusters = speakers. However, it is also
obvious that modeling with LDA still has a problem. This is
due to the assumption of GG; independence in (12). This can be
observed from (9) where every B; is sampled independent and
identically distributed (i.i.d.) from the common Dirichlet. This
does not suit the speaker clustering task, since the speaker topic
mixtures at £ and at ¢ 4+ 1 are indeed correlated and similar to
each other. We illustrate the idea and the problem of LDA in
Fig. 7.

Originated in natural language processing, LDA usually as-
sumes multinomial distribution for observed words. Please note
that we again adopt a Gaussian distribution for angle-words for
the same reason as in the GMM case.

(12)
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Fig. 7. Illustration of LDA model for speaker clustering in diarization tasks.
Time-varying mixtures GG, s are introduced, but they are completely independent
of each other, even between successive frame documents.

IV. DyNaAMIC LDA MODEL

A. Idea of Dynamic LDA

From the above discussions, we conclude that we need a new
mixture model that can represent both of the following points:

1) time-varying speaker mixtures;

2) correlation between successive frame documents.

For that purpose, we adopt a new probabilistic model called
dynamic Latent Dirichlet Allocation (dLDA). dLDA was first
introduced in [15] to capture the time evolution of the data prop-
erties of documents, but it is applicable to many time-series
data in other domains. We found that the idea and formula-
tion of dLDA is surprisingly well-suited to our speaker clus-
tering problem in diarization tasks. This article is, to the best
of our knowledge, the first attempt to utilize dLDA in speaker
diarization.

Its idea is straightforward: dLDA sets a Markov property be-
tween the distributions of two consecutive time steps. This prop-
erty is described as follows:

K
=Y mxba, (6) (13)
k=1
p (w;) =Beta (ag,bg) fort >1, w; =1 (14)
K
Gi(0) = (1 = wy) Goo1(0) + weHy (6) =Y Brrba, 6 (15)
k=
t t '
:Z{ H (1—wm}lel ZUHHI
=1 m=Il+1

(16)

As in the case of LDA [(12)], G(#) is a mixture of speaker pa-
rameters that reflect the actual utterances at time ¢. The key point
of (15) is that G¢(#) is constructed as a linear interpolation of the
previous distribution G¢_1(#) and a newly introduced “innova-
tion distribution” H;(#), which is responsible for the change in
the sample distribution between ¢ — 1 and ¢. H;(6) is parameter-
ized by the time-varying mixing vector T = (741, ..., Tt K ),
whose sum of elements equals one. In this way, we can hold both

33848
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Fig. 8. TIllustration of dLDA model for speaker clustering in diarization tasks.
Markov dependency is assumed for G, enabling smooth speaker mixture
changes between frame documents to deal with turn-taking.
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requirements for the mixture model to solve speaker clustering.
This idea is illustrated in Fig. 8.

Also, (16) gives us another interpretation of G(6): the cur-
rent speaker mixture in the parameter space is in fact a mixture
of independent innovation distributions. This interpretation is
helpful in solving the model.

It is worth noting that wy, an interpolation factor, is a proba-
bilistic random variable sampled from Beta distribution (14) and
that regulating w; allows the dLDA model to handle irregular
distribution changes, ranging from small to significant changes.
This indicates that dLDA is extremely flexible in representing
the time-varying correlation between successive time steps.

It is beneficial to consider two extreme cases as follows. If we
set wy = 0 for all ¢, then all G4(0) is equivalent to Go(f) and
the dLDA model is reduced to the simple GMM [(8)]. On the
other hand, setting w; = 1 for all ¢ makes all time steps indepen-
dent of each other. In this case, we recover the latent Dirichlet
allocation (LDA) model [(12)]. Therefore, dLDA naturally gen-
eralizes GMM and LDA.

B. Generative Model of Dynamic LDA
The generative model of dLDA is shown as follows:

0 Qo ao)

2o ) 4D

p(my) = Dmchlet(

p (w¢) =Beta (ag, bg) for t > 1, w1 =1 (18)
t
Vel =Wy H (1 — wy,) (19)
m=Il+1
p (¢t | v¢) =Multinomial (v;) (20)
p (2t | {ct,i}, ™) =Multinomial (7rct ) 21

p (0x) = NormalGamma( g, Y0, €0, %0). (22)
P (el 2, {0k}) =N (62, ) - (23)

The graphical model of the above dLDA is shown in Fig. 3(c).

) =
)
)
)
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VB inference of dLDA model
t=1;
while x, exists
input x;;
load x; ~ X3
load variables to be estimated up to 7;
for j=1; j<Nyg, ++j
Phase I computation using Egs. (36-39);
Phase II computation using Eqgs. (40-43);
end
compute the variational posterior using Egs. (24-28);
output the estimated results;
t=t+1;
end

Fig. 9. Pseudo-algorithm of a simple online VB inference of dLDA. Ny 5 is a
pre-defined constant, number of iterations.

In (17), the probabilistic distribution of mixing ratio vector
for Hy, not B; for G, is defined as a Dirichlet distribution. g
is a hyperparameter for the Dirichlet. It is easier to work with
v, for inference than to consider the temporal mixing ratio 3 j
directly since H; are conditionally independent of each other.

Next, the interpolation factor w; in (18) is defined as we have
discussed. ag, bg are the hyperparameters for w;. Given w;, we
compute v;; (I = 1,...,%) as in (19) to move from the past
mixtures’ information to that of the current mixture.

To generate the observed angle word z, ;, first we pick an
index, ¢;; = [, meaning that the /th innovation distribution H;
generates the angle word x;; based on (20). Using 7., ,, we
choose a cluster index z;; = k, which means that the cluster
with parameter §, is responsible for generating x ;. In other
words, z;; is an index of the speaker that produces the sound
heard from the direction of z;; at time ¢ [(21)]. This model
can represent voice overlap situations naturally because z;;
may take a different value for each ¢ independently. In (22) we
sample K parameters for clusters from an appropriate prior dis-
tribution. Finally, z;; is sampled from the normal observation
distribution with picked parameter ;. Note that we employ a
normal distribution instead of the multinomial distribution used
in the original dLDA [15] because of the angle-word features.

As discussed, we assume each cluster corresponds to a
speaker, and its parameter represents the speaker location.
Thus, the choice of parameter prior p(f) is important in
obtaining good results. In this paper, we assume a one-di-
mensional Gaussian distribution for the actual angle words.
Its parameter 6}, consists of mean my and precision (inverse
of variance) o—2. Therefore, priors for these parameters are
chosen from a Normal-Gamma distribution [29] to maintain
conjugacy. 19, Yo, &0, Yo are the hyperparameters. If we assume
a multi-dimensional Gaussian for the observation distribution,
then the parameter prior is chosen to be Normal-InverseWishart
[29]. Because of conjugacy, the dLDA inference is fast and
reliable as discussed in the next section.

C. Some Notes and Related Works

Since the dLDA model is fully formulated in a probabilistic
generative model, it can not only infer the number of clusters
(speakers), but also flexibly estimate the time evolution of the
parameter (sample) distributions from an observed sequence.

These elements are subject to the Dirichlet prior in (17). If we
set K large enough, we will have an appropriate number of “ef-
fective” clusters that have a large mixing ratio, and the mixing
ratios of the other clusters will become negligibly small, i.e.,
the number of “effective” clusters (speakers) and their mixing
ratios are automatically estimated. Values of the parameters 6,
are also fully probabilistically modeled, and are also optimized
automatically in a Bayesian manner.

There are two works closely related to dLDA. Both are
strongly formulated in a probabilistic (Bayesian) manner;
thus, it may be fruitful to discuss the difference between these
models.

dLDA can be extended to a dynamic Hierarchical Dirichlet
Process (dHDP) [30] by taking the limit of K — oo, where
the finite Dirichlet prior is replaced by an infinite stick-breaking
prior. In their paper, dHDP is used for segmentation of a music
piece. However, it is difficult to derive a VB inference algorithm
for dHDP, which is preferable for (future) real-time systems.

Another closely related model was recently proposed by Fox
et al. [10]. The model formulates an infinite number of speakers
and time-dependent turn-taking in a form of extended HMM. In
the aspect of model construction, their model differs from dLDA
in the assumption of dynamics in sequences. Since the HMM al-
lows discrete state jumps, their model suits time-series sequence
with many abrupt structural changes. The dLDA model, on the
other hand, prefers smoother changes able to be captured by
linear interpolation [(15)] with the dependencies controlled by
wy [((14)].

One main difference in terms of practicality is that their model
does not allow overlapping of speakers, while dLDA does. This
is because the hidden states of extended HMM correspond to
“speaker A speaks,” “speaker B speaks,” and so forth. On the
other hand, our dLDA model estimates the mixture of K clusters
at each time frame. Thus, dLDA is able to represent overlapping
of speakers in a more natural way than Fox’s model.

V. INFERENCE

A. Inference via Variational Bayes

There are two major approaches to solving the probabilistic
model. Gibbs sampling is accurate but slow in terms of conver-
gence, while variational Bayes (VB) [29], [31] is fast but may
be trapped in locally optimal solutions. We prefer VB inference
for online speaker diarization.

In this paper, we develop an online and incremental infer-
ence by VB for dLDA. VB estimates the variational (approx-
imated) posterior ¢ () of the hidden variables and parameters.
Since a VB solution for a Bayes model is just an approximation,
it may be trapped by local optima. However, it provides fast it-
erative computation, which is important when applying a com-
plex probabilistic model to real applications. The performance
of VB is better than that of point estimation methods such as
maximum-likelihood (ML) and maximum a posteriori (MAP)
solutions in many cases. In signal/sound processing research,
[31], [32] are pioneer works on the use of VB.

We first describe the derivation of the VB solution for the
dLDA model [15]. VB posteriors ¢ (-) are approximated pos-
teriors in the sense that all posteriors are independent of other
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variables since the true posteriors are not. Because of the conju-
gacy incorporated in the generative model (17)—(23), we expect
the following forms of the variational posteriors:

T ngy
q* (m) = Dmchlet< + Z Zrm i,15m,it>
m=t 1=1
o T nog,
0
R + mz::f ; T i kSmits
o T ng
0
'K + mz_t;?"m,i,ksm,i,t;> (24)
ny t—1
4 (1) = Bet <ao+zstmbo+z S m> o5
1=1 m=1
q* (ct,;) =Multinomial (S ;. 1,- .., St41,---,5it) (26)
q* (Zt,i) = Multinomial(rt_yi,l, v Tk e e 77"75_’1"1() 27
q* (8;) = NormalGamma (p1,71, &1, %1) (28)
where
Yopo + NiZy
_ ¢ 29
i Yo + Ni %
71 =7 + Ni (30)
N,
& =86+ 7k @3
S YN (&1 — o)’
b1 =Wy + — + 32
Y1 =0 2 Yo + N 2 (32)
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Ne=Y Y rix (33)
t=1 i=1
Tp = N Z Zﬁ,z’,kwt,i (34)
k t=1 i=1
2
ZZm (wei — )" (35)
t=1 1=1

It is easy to derive these variational posteriors if you follow
the textbook [29]. The objective of the inference is to estimate all
of the parameters s; ; ;, 7+ ;.1 to represent the posteriors above.

1) Phase I—Computing Variational Expectations: The infer-
ence process consists of two phases that are iteratively computed
as in the standard EM algorithm. The first phase computes ex-
pectations of several hidden variables over the variational pos-
teriors.

Let us denote E,. [f] as the expectation of function f over the
variational posterior of variable x. Then, in phase I, we compute
the following expectations:

E., [logw] = (ao + Z St,i,t)
n¢ t
- ( 43 s

i=1 m=1

m> (36)

where E,,,, [logw;] = 0:
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Note 1) indicates the digamma function.

2) Phase II—Computing the Posterior Parameters: In phase
II, we compute s;; ;s and 74 ; 1S to estimate the parameters of
variational posteriors in (24)—(28).

It is obvious that these quantities indicate the average prob-
abilities of 1) s; ; ;: picking the innovation measure H; and 2)
74,0k picking cluster k to sample x, ; since these parameters
appear as they are in (26) and (27), respectively.

We can compute these quantities by the equations shown as
follows:

Ot,i,l = m, logwl Z IEwm [log 1 — ’U)m)]
m=Il+1
+ er i kB [log 7y 1] (40)
k=1
eXpl\Ot.;
Sti) = ————— p(7t1) 1)
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m=1
t
prik =Ee, [logp (z¢,:|0k)] + Z st,i,Ex,  [logm ] (42)
=1
Pein = eXP(Pt i k) (43)
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B. Estimating the Mixing Ratios and the Number of Speakers

We describe how to estimate the mixing ratios and the number
of speakers. First, we estimate the expected number of samples
assigned to cluster & (a speaker) at time ¢ as

Nt

lze,ll = Z Ttyik-

i=1

(44)

Second, we use ||| to determine the posterior estimates of
temporal mixing ratios ﬂtk and global mixing ratio ﬂk as fol-
lows:

2zl
~ z ~
Ber = —K“ Al . B=
> Nzl
k=1

= (45)
>0 2zl
k=1t
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We count the number of “effective clusters” (speakers) as those
that have mixing ratio (3, larger than chance level 1/ K. In many
cases, the mixing ratios of other minor clusters are negligible.

C. Techniques for Fast Online VB Processing

Inherently, the computational cost of the inference process
grows with the time step, since the number of variables to be es-
timated and the samples to be stored keep increasing. Therefore,
we developed several techniques to accelerate online dLDA in-
ference. Estimation precision can be well balanced against com-
putation costs.

1) Limiting Re-Estimated Variables: One of the most com-
monly used techniques for adaptive estimation is to re-estimate
(update) only the variables of the most recent time steps. We ex-
pect that the hidden variables or parameters of older time steps
have converged to stable values because they have been repeat-
edly updated by VB.

Thus, we minimize computation cost by limiting the variables
to be re-estimated. Equations (36)—(43) are updated only for the
variables of the most recent W, (< t) steps. This reduces the
computational cost to Wy /T, where T is the total number of
time steps.

2) Limiting Data Used in Inferences: The above trick re-
duces the number of variables that need to be re-estimated. How-
ever, inference of each variable requires all currently available
observations and estimation results. Thus, the computational
cost basically increases with the time step.

We studied the dLDA model and found that this cost could
be reduced based on the model characteristics. As discussed,
G has a time-dependency and the strength of the dependency
is controlled by w; [(18)]. w; will be close to 1 when the sample
distributions change drastically (e.g., speaker turn-taking).

Assuming that the most recent turn-taking is observed at ¢t =
m, W, =~ 1, and it is easy to see that v,; ~ 0,1 < m in (19).
This indicates that the posterior probability of ¢;;; = 1, namely
sti1, Will be close to zero for | < m. In turn, the corresponding
computations for VB inference can be eliminated.

Therefore, we can forget those quantities, which greatly re-
duces the computation cost of each update equation. We retain
only the information (estimation results and observations) of the
Wy (< t) most recent time steps, where ¢ is the time index of
the oldest variables to be updated.

3) Limiting Cluster Updates: We expect that the mixing ratio
concentrates on fewer clusters K.g. However, all K clusters
and their parameters must be maintained during the inference
process, including “negligible” K — K.g clusters.

Thus, we introduce another trick for computational cost
saving. At each VB iteraAtion, we update the kth cluster, which
has the mixing ratio of (i, with the probability of pypdate (k).
We can define p.lpdam(k) in several ways. Our experiments use
the following definition:

pupdatc(k) = K X min (%nék) . (46)

This equation indicates that “effective” clusters that have larger
mixing ratios than chance levels 1/K are updated at each time

TABLE 1
SPECIFICATIONS OF REAL RECORDED DATA SETS

Data ID | # Speaker | Overlap [%] | # Turn taking | # Utterance
CP1 4 18.6 149 185
CP2 4 13.0 183 218
DC 3 10.8 126 172
CN 3 34.8 243 278

step, while the other clusters are re-computed according to the
mixing ratio.

To summarize, we only update the estimation of variational
posteriors for the most recent W steps, and retain the estimation
results and observations of the most recent W5 steps. Re-com-
putations of cluster parameters and likelihoods are further con-
fined probabilistically. These techniques drastically reduce the
computation cost of dLDA.

D. Inference of Hyperparameters

Thus far, we have discussed how to infer the hidden variables
in a Bayesian manner. In previous discussions, hyperparameters
such as aq, ag were assumed to be constant. In several cases,
however, the initial values of these hyperparameters will affect
the estimation of hidden variables. This problem disturbs VB
inference because VB is a deterministic iterative procedure that
stops at local optima.

To overcome this problem, we infer the hyperparameters
in the inference process simultaneously. Since VB is fully
Bayesian, we would like to estimate the hyperparameters in a
Bayesian manner as well, instead of resorting to heuristics or
offline model selection techniques.

One of the most common ways is to put vague priors on hy-
perparameters and estimate their posteriors by VB as well. An-
other approach [33] is to reparameterize and sample each hy-
perparameter in terms of a € (0, 1), instead of precise posterior
evaluations of the original hyperparameter. For example, if hy-
perparameter « is assumed to be Gamma-distributed, we con-
vert g to a = /(1 4+ o). Sampling a can be achieved from
a uniform grid on (0, 1). We estimate (unnormalized) posterior
probability densities at several a values and choose one to up-
date the hyperparameter.

In this paper, we select the latter approach because it is more
convenient to implement since it is applicable to non-conjugate
cases and prevents the VB solutions from being trapped at local
optima due to the jumps provided by the hyperparameter sam-

pling.

VI. EXPERIMENTS

A. Data Sets

We collected four data sets of the real recordings gathered
in [13]. Their specifications are shown in Table I. We note that
the recordings contain much turn-taking and voice-overlapping
periods; thus, diarization of these four data sets are challenging.
Each data set took the form of a 300-(s) recording that was sam-
pled at 16 (kHz). The frame length was 64 (ms) and the frame
shift was 32 (ms).
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We also employed the benchmark datasets provided by the
AMI project [34]. We used some samples from the IDIAP subset
(“IS” meetings). The datasets are used in many studies, such as
[35], [36]. Each recording involves four participants engaged
in a scenario-based meeting with different durations. Approxi-
mately 18% of speech in the recordings overlaps.

We computed angle-word representations, estimated speaker
clusters, and inferred who spoke when for all speakers.

B. Quantitative Evaluation: Speaker Diarization Precision

First, we show quantitative performance comparisons. We
evaluated the classification performance to verify the entire di-
arization system (Fig. 1). We employ the diarization error rate
(DER) measure [3] for the evaluations. DER is a percentage of
the error time length against the total sound-recording length.
The error time consists of the following three errors.

1) MST (missed speaker time): the length of time intervals in
which the system detected no utterances while a speaker(s)
actually spoke.

2) FAT (false alarm speaker time): the length of time intervals
in which the system detected speaker utterances while no
speaker actually spoke.

3) SET (speaker error time): the length of time intervals over
which the system correctly detected the speaker utterances,
but failed to associate the utterance events with the correct
speaker.

Given these three errors, DER is computed as follows:

MST + FAT + SET
TOTAL

where TOTAL denotes the length of the total speech. The eval-
uation criteria also follow those provided by NIST [3], that is,
the speech segments were split with non-speech periods of more
than 300 (ms) in length, and the allowed tolerance for the differ-
ence between the system outputs and the correct labels was 250
(ms). The correct speech onset and offset labels for the recorded
data were generated manually. All DER values are computed
using a script provided by NIST.

We test a simple classification rule based on the posterior of
sample assignments z; ; to estimate each speaker’s diarization
activity (speaks or not). The rule is

DER(%) = 100 x

(47)

k speaks at ¢ if |zewll>m & Bek > 7o,

k does not speak at ¢ otherwise

where 71, o are predefined thresholds. This simple classifica-
tion rule is based on the one used in [13].

We compare the performance of our proposed model with
two previously studied techniques. The first is [13], which is a
non-probabilistic online speaker clustering model with the same
DOA features. We also evaluated the diarization performance
with a method proposed by ICSI [8], which is a state-of-the-art
model. The method is based on agglomerative clustering using
ABIC, where each cluster is modeled with one GMM per fea-
ture stream and embedded into an ergodic HMM, and both a
speech feature (MFCC) and a location feature (TDOA) are uti-
lized. Please note that [8] is a batch (offline) algorithm; thus, we
do not expect the proposed online (incremental) dLDA model to
outperform [8] in the DER scores.

TABLE II

DER MEASURES (%) ACHIEVED IN DIARIZATION EXPERIMENTS. FOR THE

FIRST FOUR DATA, “CP2” IS USED AS A DEVELOPMENT SET. FOR THE IS
DATASET, “IS1008D” 1S USED AS A DEVELOPMENT SET. DEVELOPMENT SETS

ARE MARKED BY ASTERISKS. PARENTHETIC DER VALUES OF [8] ON THE
FIRST FOUR DATA SETS WERE COMPUTED BY OUR IMPLEMENTATION: THEY
MIGHT BE WORSE THAN THE ORIGINAL IMPLEMENTATION. WE EXCERPT THE
DER VALUES OF [8] ON THE IS DATASET FROM THE ONLINE APPENDIX OF [36]

Dataset [13] [8] GMM | LDA | dLDA(proposed)
CP1 219 | 37.1) 55.8 327 21.7
*CP2 25.0 | (35.8) 32.8 24.5 19.7
DC 29.9 | (47.0) 60.6 48.0 31.0
CN 343 | (56.4) 57.3 48.5 34.1
1S1000a 419 | 46.26 352 76.9 322
IS1001a 31.7 | 30.58 26.7 33.8 23.7
IS1001c 322 | 12.07 68.2 40.7 272
1S1006d 64.3 | 54.56 67.4 69.9 69.7
IS1008a 13.1 5.13 77.8 65.3 62.7
IS1008b 19.6 | 16.47 57.8 55.9 23.1
IS1008c 22.6 | 12.09 30.1 30.8 204
*[S1008d 15.8 | 20.83 21.9 32.1 13.6
x
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Fig. 10. Turn-taking detection by the trajectory of estimated w; values in sim-
ulation data (best viewed in color). Circles, rectangles, and triangles denote the
turn-taking. (A): Ground truth of speaker utterances. (B): Variational expecta-
tion of w;.

For each data collection, we choose one conversation
recording as a development set to tune the parameters of [13]
and the proposed models. For the proposed models, we tuned
parameters related to preprocessing and postprocessing, i.e.,
parameters for the BoW feature extractions (length of merged
consecutive frames for a document, noise threshold for weak
power responses, strength of VAD, and map from f; to n; ) and
parameters for the classification (71 and 7). Please recall that
the model parameters (hidden variables and hyperparameters)
of GMM, LDA and dLDA models are automatically estimated
by Variational Bayes updates.

Table II summarizes the computed DER measures. Along
with [8], [13], we present the DER values of GMM and LDA
models. GMM and LDA models are simulated by setting all
wy as wy = 0 or wy = 1, respectively. As expected, we con-
firm that DERs of the GMM and the LDA models are much
worse than those of dLDA. This is reasonable since the assump-
tions made in GMM and LDA models are not realistic, ignoring
the natural properties of conversations. Compared to previous
research, the dLDA model presents comparable or better per-
formance against the non-Bayesian online diarization system of
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angle (location). Left: clustering results by GMM. Center: clustering results by LDA. Right: clustering results by dLDA.
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Fig. 12. Clustering results on CN real record data set (three speakers). Vertical axis denotes the probability density, and horizontal axis denotes the normalized
angle (location). Left: clustering results by GMM. Center: clustering results by LDA. Right: clustering results by dLDA.

[13] in many recordings. Concerning the comparisons with [8],
the DER values of [8] in Table II for the first four data were com-
puted by our implementation. Thus, these values could be worse
than the true performance of [8]. For the IS meeting dataset,
DER values were taken from the online appendix of [36]. As ex-
pected, [8], which is one of the best offline diarization methods,
exhibits the best DER values in many IS meeting recordings.
However, the proposed dLDA model also marks comparable or
better results for a few IS recordings. Considering that dLDA is
tested as an online (incremental) model in the experiments, this
result is quite promising.

These results provide more understanding about the dLDA
model. The main difference between the first four datasets and
IS corpus recordings is the duration of each speaker’s turn. In
IS recordings, each turn of utterance has a longer time dura-
tion. On the other hand, the first four datasets are characterized
with much shorter durations of turns, and frequent turn-taking.
The generative process of turn-taking in dLDA [(14)—(16)] in-
dicates that dLDA is able to estimate and track the changes of
speaker distributions for every frame document thanks to w;. At
the same time, the dLDA may overfit if the changes of speaker
distributions are not so frequent and drastic, as in the case of
IS recordings (with long durations of speech turns). We also
note that locations of speakers are not strictly fixed during the
recordings for some IS recordings. The dLDA model does not
assume the changes of the speaker locations; therefore, we think

this model mismatch is one reason for severely degraded perfor-
mance of dLDA for some recordings (e.g., IS1008a).

C. Qualitative Evaluations

Next, we examine several qualitative results to elucidate the
reasons for the good DER scores of dLDA.

1) Turn-Taking Detection by Interpolation Variable: One
distinct feature of dLDA is the notion of interpolation factor w;
in (14) and (15). Larger w; indicates that turn-taking is likely at
time ¢.

Fig. 10 presents estimated w; for the simulated recording
data. The simulated data has 467 frames with 64 (ms) frame
shift intervals. Out of 467 frames, 45 frames were excluded
in advance as no-speech periods based on VAD. We merged
five consecutive frames into a document. The data simulated
the conversation of three people with speaker overlapping, con-
volving English speech signals and measured impulse responses
in a room [37].

Colored plots in the upper panel, (A), are the actual speaker
utterance periods. Circles, rectangles and triangles denote turn-
taking. The lower panel, (B), shows the expectation of varia-
tional posterior of w;. The trajectory is characterized by a few
spikes. These spikes indicate large values of w;, which imply the
existence of turn-taking. In fact, we find that most of the (actual)
turn-taking matches these spikes in w;. This result shows that
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dLDA is able to model and represent turn-taking in the recorded
conversation automatically.

2) Speaker Clustering Results: Finally, we tested the perfor-
mance of dLDA with regard to the speaker clustering tasks, in
a comparison against the GMM and the LDA models. After the
online clustering of the recorded data up to the last time 7', we
examined the resultant number of clusters and their parameters.

We present a part of the clustering results from the real
recorded data sets in Fig. 11 (CP1), and Fig. 12 (CN). Illus-
trated normal distributions are “effective” clusters in terms of
estimated (3 in (45).

dLDA clustering yielded better results than either GMM or
LDA. We assume that this superiority comes from the ability
to model the intermittent changes of speaker (cluster) distribu-
tions. The dLDA model could not achieve perfect clustering
on the DC and CN data sets: the model produced extra clus-
ters due to noise inputs. However, those “noise” clusters had
smaller mixing ratios than the “speaker” clusters. Therefore, we
can further improve the clustering of dLDA by carefully refining
threshold (ﬂAk > 1/K). Since speaker clustering is performed so
precisely, itis no surprise that dLDA achieved good DER values.

Based on these results, we conclude that the dLDA model
is able to infer the speaker clusters from speakers’ location in-
formation. The quantitative results show that the dLDA model
especially suits the conversations with frequent turn-taking and
shorter speech turn durations.

VII. CONCLUSION

In this paper, we introduced a new probabilistic model
for speaker diarization tasks. We adopted the dynamic LDA
(dLDA) model for speaker clustering. The dLDA model auto-
matically infers the number of clusters and data partitioning,
and is able to handle time-varying cluster distributions. We
proposed a fully probabilistic model for speaker diarization in
combination with a bag-of-angle word representation of DOA
features. We developed an online inference algorithm based on
variational Bayes, and experimentally confirmed that dLDA is
able to infer the number of speakers successfully and improves
DER performance of online diarization. We also found that
the online dLDA recorded good DER values compared to the
state-of-the-art offline diarization system.

Some previous studies concerning online diarization pro-
posed using additional cues. For example, [36], [38] proposed
a multi-modal (visual + audio) setup for online diarization.
Including other features such as MFCC and visual cues is very
interesting. We think augmenting other feature models is a
promising direction for improving the proposed method.

APPENDIX

This Appendix explains our methods of calculating the DOA
feature and the power vector f, ;.

Let y;(f,t) be a signal ‘observed by microphone j
(G = 1,...,M). To calculate the DOA of a sound source
active at time ¢, we first calculate the time difference of arrival

(TDOA) between microphone pair 5 — j’ at each time—fre-
quency slot:

1

@y (f 1) = s— arg [y; (f, )y} (f,1)]

" onf )

where * denotes the complex conjugate, and 5 is the index of the
reference microphone that is arbitrarily selected from one of M
microphones. We then calculate the direction of arrival (DOA)
information at each time—frequency slot using the TDOA in-
formation ¢’(f,t), which consists of the ¢’ (f, ) of all micro-
phone pairs:

q(f.t) = cD ¢ (f,1) (49)

where c is the propagation velocity of the signals, and * denotes
the Moore—Penrose pseudo-inverse. D is the microphone coor-
dinate information D = [diy — dj,...,dy — dj/]T, where a
3-D vector d; represents the location of microphone j. When
the source azimuth is # and the elevation is ¢, the DOA vector
g can be written as

q = [cos f cos ¢, sin A cos ¢, sin ]

In this paper, we employ only azimuth 6 for simplicity as the
DOA information.

The signal power f, ; from direction d at time ¢ is calculated
by adding the power of the time—frequency component:

) ly(f, )2

d—0.5°<0(f,t)<d+0.5°

fra= (50)
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