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The identification of hidden interdependences among the parts of a complex system is a fundamental issue.
Typically, the objective is, given only a sequence of scalar measurements, to infer as much as possible about
the internal dynamics of the system and about the interactions between its subsystems. In general, such
interactions are not only nonlinear but also asymmetric. Constraints on the estimation of hidden relationships
are further posed by noise and by the length of signals sampled from real world systems. The focus of this
paper is causal dependences between bivariate time series. We especially focus on the nonlinear extension of
Granger causality with polynomial terms of the conventional embedding vector. In this paper, we study the
performance of this measure in comparison with three alternative methods proposed recently in low-
dimensional and low-order-nonlinearity systems. Those methods are tested with three different artificial chaotic
maps with several noise contamination setups. As a result, we find that the polynomial embedding technique
successfully detects asymmetric �causal� dependences between bivariate time series in many low-dimensional
cases.
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I. INTRODUCTION

The detection and characterization of dependences among
interacting components of a complex system can give novel
insights into its functioning and lead to a better understand-
ing of its dynamics. In most natural as opposed to laboratory
settings, however, we are not granted direct access to the
system’s components, but possess instead only a set of stra-
tegically selected and typically simultaneously recorded vari-
ables. The problem of inferring and quantifying relationships
between the parts of the system �e.g., how they contribute to
the generation of information and at what rate they exchange
information� is thus mapped onto the one of studying the
relationships between multivariate time series corresponding
to the recorded variables.

A popular way of evaluating the statistical dependency
between time series is cross correlation. This method is not
only computationally efficient but also has an appealing and
natural interpretation. Cross correlation, however, is a
second-order statistics and handles merely linear depen-
dences. Mutual information in the information theory pro-
vides an attractive way of circumventing the restrictions of
cross correlation because it is sensitive to higher-order rela-
tionships. Yet mutual information is a symmetric measure,
and fails to detect directional �asymmetric� flow of informa-
tion unless one of the time series is delayed. Measures of
interdependence or “causality structure” aimed at overcom-
ing the limitations of mutual information have recently been

introduced �1–5�. Although all these measures are asymmet-
ric by construction and can be shown to work in specific
instances, their general application is not a straightforward
subject �for a review, see �6��. Real world signals �e.g., neu-
rophysiological signals� are typically noisy, nonstationary,
and of finite sample size; moreover, their dependences are
often characterized by nonlinearities.

Here, we focus on another type of extension of Granger
causality. We augment the time-delayed embedding vector
by incorporating multivariate polynomial terms, and use the
resulting nonlinear embedding vector to extend linear
Granger causality �7�. Polynomial extension of Granger cau-
sality was reported in �8�, but intensive comparison with
other nonlinear extensions of Granger causality was not
made. In this paper, we provide a quantitative study of sev-
eral methods’ performance on some numerical data sets. As a
first step, we test low-dimensional and low-order-nonlinear
systems in this paper.

In what follows, we first describe three previously intro-
duced methods. We then introduce the notion of the polyno-
mial embedding vector and show how it can be used to ex-
tend Granger causality. We proceed by exposing the results
of a set of numerical experiments with chaotic maps. Finally,
we discuss possible extensions and alternatives to the pro-
posed method.

II. EXISTING METHODS

Given a complex system, it is most likely the case that its
internal dynamics is a priori unknown. There is also no
knowledge of whether the system is deterministic or stochas-
tic. Here, we assume that all we can do is to measure two or
more variables observed separately from different parts of
the complex system.

A. Embedding vector

For simplicity, let us consider the bivariate case, and let us
assume that X= �x1 ,x2 , . . . ,xN� and Y = �y1 ,y2 , . . . ,yN� are
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two simultaneously measured time series each consisting of
N scalar quantities. The time-delayed embedding vector re-
constructing the state �or phase� space X of time series X is
expressed as

xt
m,� = �xt,xt−�,xt−2�, . . . ,xt−�m−1���T, �1�

where m is the embedding dimension and � is the time delay
�or lag� between successive elements of the state vector
�9,10�. The choice of both parameters depends on the dy-
namics underlying the data. Here, first guesses for the em-
bedding dimension and the time lag were obtained by the
false nearest neighbor technique �11� and as the first mini-
mum of the mutual information function �12�, respectively.
The time-delayed embedding vector reconstructing the state
space Y of time series Y can be defined analogously. If not
otherwise stated in this paper, �=1, and we use the following
expression:

xt = xt
m = �xt,xt−1,xt−2, . . . ,xt−m+1�T. �2�

Similarly, we can define yt.
Note that many of the existing causality measures �includ-

ing the ones described in this paper� are based on the notion
of the embedding vector.

B. Granger causality and its extensions

The idea of Granger causality applied to bivariate time
series �7� relies on the notion that the prediction of one time
series through linear regression can be improved by incorpo-
rating information about the past values of the other time
series. To assess the dependence of X on Y �subsequently
also denoted as Y ⇒X�, consider the following set of autore-
gressive predictions:

xt+1 = �Txt + � + �t
�x�, �3�

xt+1 = aTxt + bTyt + p + �t
��x�y�, �4�

where �t
�x� and �t

��x�y� represent the prediction errors, �, a, and
b denote regression coefficient vectors, and � and p are con-
stants. The coefficient vectors and constants are determined
so as to minimize the variance of �t

�x� and �t
��x�y�. Once the

coefficient vectors have been calculated, the causal influence
of Y on X can be expressed as

GY⇒X = 1 −
var��t

��x�y��
var��t

�x��
. �5�

Intuitively, the larger GY⇒X the stronger is the estimated
causal influence of Y on X. In other words, if the prediction
of xt improves by incorporating the past values of yt, then yt
is said to “Granger cause” xt. In a similar way, it is possible
to define �t

�y�, �t
��y�x�, and GX⇒Y.

Granger causality is formulated for linear models, and its
application to nonlinear systems may not be appropriate in
the general case. Here, we describe two recently introduced
nonlinear extensions of Granger causality. The first one is
nonlinear Granger causality �NLGC� �1�. NLGC employs a
nonlinear kernel autoregression scheme instead of a linear

autoregression to estimate the causal influence of the two
time series on each other. The autoregression models of Eqs.
�3� and �4� are replaced by the following expressions:

xt+1 = �T��xt� + � + �t
�x�, �6�

xt+1 = aT��xt� + bT��yt� + p + �t
��x�y�, �7�

where � is a P-dimensional vector whose elements are non-
linear radial based functions �RBFs� centered at x�1 , . . . ,x�P,

��xt� ��
−

�xt − x�1�
�2

−
�xt − x�2�

�2

]

−
�xt − x�P�

�2

	 �8�

with � a parameter defined a priori, and the center vectors
chosen using fuzzy c-means clustering �other clustering al-
gorithms can also be applied�. The nonlinear Granger causal
influence of Y on X or X on Y can be expressed as the
difference between the variances of the two error terms

cY⇒X = var��t
�x�� − var��t

��x�y�� , �9�

cX⇒Y = var��t
�y�� − var��t

��y�x�� . �10�

If cY⇒X�0 then the prediction of xt improves by including
yt, and it can be said that Y causally affects X. Analogously,
if cX⇒Y �0 then X has a causal influence on Y.

Another extension of Granger causality, called the ex-
tended Granger causality index �EGCI�, was proposed in �4�.
The rationale of this technique is to divide the phase space
into a set of small neighborhoods and approximate the glo-
bally nonlinear dynamics by local linear regression models.
Let us express the joint dynamics of state space X and state
space Y as

zt = 
xt

yt
� . �11�

The resulting state vector zt�R2m is a point in the
2m-dimensional reconstructed phase space Z. Given L�N
points in Z, we define L clusters of local neighbors 	k
= �zt : �zt−zt�k���d�, where d is the size of the neighborhood
and t�k� �k=1, . . . ,L� is the index of an arbitrarily selected
centroid vector zt�k�. The parameter d is the size of the neigh-
borhood and is chosen of the order of the resolution of the
measurements. If the d neighborhood contains no points, d is
increased.

Once the entire reconstructed phase space Z has been seg-
mented, the linear Granger “causalities” GY⇒X�k� and
GX⇒Y�k� are calculated for each local neighborhood 	k. By
averaging over all neighborhoods sampling Z �i.e., L neigh-
boring clusters�, we obtain two extended Granger causality
indices
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Y⇒X =
1

L
�
k=1

L

GY⇒X�k� , �12�


X⇒Y =
1

L
�
k=1

L

GX⇒Y�k� . �13�

One relevant problem of both nonlinear extensions of
Granger causality is their dependency on at least two param-
eters which need to be estimated and tuned to the time series
at hand �e.g., size and number of the local neighborhoods,
number of radial basis functions, and their parameter ��.
Another drawback is their respective computational costs. In
the case of NLGC, the computational cost of the least-mean-
square regression is polynomial in the number of RBFs. For
the EGCI, it is necessary to exhaustively search the state
space to determine the local neighborhood of every centroid
vector.

C. Transfer entropy

Another approach to obtaining knowledge about asym-
metric �causal� dependences between coupled systems is by
measuring to what extent its individual components contrib-
ute to information production and at what rate they exchange
information among each other. Transfer entropy is an infor-
mation theoretic measure which not only shares some of the
properties of mutual information but also takes the dynamics
of information transport into account �3�. It is a specific ver-
sion of the mutual information for conditional probabilities,
but unlike mutual information it is designed to detect the
directed exchange of information between two systems,
separate for both directions, and conditional to common his-
tory and input signals.

Transfer entropy measures the deviation from the follow-
ing conditional independency assumption about the Markov
process:

p��xt+1�xt
k� = p��xt+1�xt

k,yt
l� �14�

where p denotes the transition �conditional� probability. If
the deviation is small, then we can safely assume that the
state of space Y has no �or little� relevance on the transition
probabilities of the state vectors of space X. If the deviation
is large, however, then the conditional independency as-
sumption is not valid. The incorrectness of the assumption
can be quantified by the transfer entropy, which is formulated
as the Kullback-Leibler entropy between p�xt+1 �xt

k� and
p�xt+1 �xt

k ,yt
l�,

TY⇒X = �
t

p�xt+1,xt
k,yt

l�log
p�xt+1�xt

k,yt
l�

p�xt+1�xt
k�

. �15�

A similar expression exists for TX⇒Y. Transfer entropy rep-
resents the information about a future observation of variable
xt obtained from the simultaneous observation of past values
of both xt and yt, after discarding the information about the
future of xt obtained from the past of xt alone. If not stated
otherwise, in the subsequent part of this paper k= l=1. The
conditional probabilities of Eq. �15� are calculated from the

joint probability p�xt+1 ,xt
k ,yt

l� which, in turn, is estimated
using the histograms of the embedding vectors. The only
parameter is the number of bins, r.

III. POLYNOMIAL EMBEDDING VECTOR AND
NONLINEAR GRANGER CAUSALITY

Here, we present an alternative way of extending linear
Granger causality, which not only performs better than
NLGC and the EGCI but solves the problem of parameter
tuning. We first extend the time-delayed embedding vector
by incorporating multivariate polynomial terms. We then
generalize Granger’s idea by using the resulting “polyno-
mial” embedding vector.

A. Polynomial embedding vector

Let us consider all possible combinations of order R of
different monomial terms generated from the elements of xt,

x̃t�i, j,R� = 

k=i

k=j

xt−k
Rk , �16�

where 0� i� j�m, Rk�0, and 1�Ri+ ¯ +Rj �R. By ar-
ranging all possible x̃t in an array, we can define a nonlinear
extension of the time-delayed embedding vector, subse-
quently called the polynomial embedding vector �PEV�:

x̃t � �xt, . . . ,xt−m+1,xt
2,xtxt−1, . . . ,xt−m+1

R �T. �17�

B. PEV-extended Granger causality

The PEV can be used to extend Granger causality. One
naive formulation is to replace the conventional delayed em-
bedding vectors xt and yt with the PEVs x̃t and ỹt, that is,

xt+1 = �Tx̃t + � + 
t
�x�, �18�

yt+1 = �Tỹt + � + 
t
�y�, �19�

with �, �, �, and � determined by autoregression so as to
minimize the variance of 
t

�x� and 
t
�y�. The “mixed” autore-

gression equations are also modified according to

xt+1 = aTx̃t + bTỹt + p + 
t
�x�y�, �20�

yt+1 = cTx̃t + dTỹt + q + 
t
�y�x�. �21�

In this paper, however, we consider the polynomials of the
mixed-state embedding vector zt as in �8�. The polynomially
extended mixed-state embedding vector z̃t incorporates the
higher-order cross-correlation terms of xt and yt as well as
the elements of x̃t and ỹt �8�.

In this case, the mixed information regression would be

xt+1 = aTz̃t + p + 
t
�x�y�, �22�

yt+1 = cTz̃t + q + 
t
�y�x�, �23�

and the resulting causality indices are

COMPARISON OF NONLINEAR GRANGER CAUSALITY… PHYSICAL REVIEW E 77, 036217 �2008�

036217-3



CY⇒X = var�
t
�x�� − var�
t

�x�y�� , �24�

CX⇒Y = var�
t
�y�� − var�
t

�y�x�� . �25�

Hereafter, we call this method PEV-extended Granger cau-
sality �PEV-GC�.

C. Computational properties

In this section, we describe the computational properties
of this polynomial approach. Compared to existing nonlinear
extensions of Granger causality this method has two advan-
tages. First, the only parameter is the order R of the largest
polynomial. It follows that the search for parameters is sim-
plified in relation to the EGCI and NLGC, which both de-
pend on the choice of at least two critical parameters. Sec-
ond, due to its close relationship to the “classical” delayed
embedding vector, the PEV is straightforward to implement
and does not require any additional computational effort such
as fuzzy c means clustering, evaluation of RBFs �as in
NLGC�, or search of local neighborhoods �as in the EGCI�.

To compute the PEV of embedding dimension m and or-
der R, the size of the nonlinear embedding vector is the sum
of the number of different monomials of degree l, that is,
�l=1

l=R 1
l!m�m+1�¯ �m+ l−1�, where m is the size of the origi-

nal linear embedding vector. For example, in our experi-
ments we used �m ,R�= �2,2� or �m ,R�= �3,3� which corre-
spond to a five- and a 19-dimensional vector, respectively
�the linear vector is two and three dimensional, respectively�.
It is clear that by using a polynomial embedding vector the
computational cost due to the evaluation of the autoregres-
sive equations increases. However, it is still reasonably small
if compared to the additional operations required by the
NLGC and EGCI.

IV. NUMERICAL EXPERIMENTS

To evaluate quantitatively the behavior of the PEV-GC
and to illustrate its effectiveness, we conducted numerical
experiments with two noiseless and two noisy model systems
with built-in causality structure. In all experiments we com-
pared the proposed measure with transfer entropy �TE�, non-
linear Granger causality, and extended Granger causality. All
simulations were done in MATLAB .

A. Noiseless polynomial chaotic map

We first studied a model system consisting of unidirec-
tionally coupled noiseless chaotic �Hénon� maps �13�:

xt+2 = 1.4 − xt+1
2 + 0.3xt, �26�

yt+2 = 1.4 − �ext+1 + �1 − e�yt+1�yt+1 + 0.3yt, �27�

where the parameter e regulates the coupling strength be-
tween the two maps. We varied e from 0 to 1 with incre-
ments of 0.025. For each coupling and for sample sizes of
N=103 and 104, the time series xt and yt were generated �the
initial 105 samples were discarded as transients�. Each ex-
periment was repeated five times.

By construction the two time series are unidirectionally
coupled with time series xt influencing time series yt. It fol-
lows that the causal influence of xt on yt should increase if
the strength of the coupling e increases. On the other hand,
causal influence of yt on xt should be negligible because
there is no interaction term in Eq. �26�. From other studies
�e.g., �3��, it is known that xt and yt will enter a �generally�
synchronized state for e�0.7. In that area, the two maps are
indistinguishable from each other and the flow of informa-
tion is zero �despite a nonzero coupling between the maps�.

The results of our experiments are shown in Fig. 1 �N
=103� and in Fig. 2 �N=104�. The parameter settings used for
the analysis are summarized in Table I. Those parameters are
experimentally selected so as to give the best results. As
evident from the graphs, PEV-GC gives noise-free and con-
sistent results even for small sample sizes �N=103�. We also
observe that only PEV-GC successfully indicates absence of
a causal influence of yt on xt �CX⇒Y =0� at any e.

B. Noisy polynomial chaotic map

In order to assess the robustness of PEV-GC against noise,
in the second set of experiments we considered noise-
affected unidirectionally coupled Hénon maps. After gener-
ating 105+N samples �as in the previous experiment, the first
105 samples were discarded as transients�, independent iden-
tically distributed white noise was added to the time series.
We tested the causality measures for N=104 and noise levels
of 10%, 30%, and 50%. Each experiment was conducted five
times.

The results are presented in Fig. 3 �noise level 10%�, Fig.
4 �noise level 30%�, and Fig. 5 �noise level 50%�. The pa-
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FIG. 1. Unidirectionally coupled Hénon maps �N=103; no
noise�. �a� PEV-extended Granger causality. �b� Transfer entropy.
�c� Nonlinear Granger Causality. �d� Extended Granger causality
index. The horizontal axis denotes the strength of coupling and the
vertical axis denotes the causality measure. Thick lines represent
X⇒Y causality and thin lines represent Y ⇒X causality. The plots
are averages over five experimental runs. The error bars denote
standard deviations of causality measures for five runs. See Table I
for parameters.
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rameter settings for each method are shown in Table I. We
observe that the PEV-GC and TE methods are robust against
the influence of fairly high levels of noise for all values of
the coupling parameter e. PEV-GC performs better because it
successfully shows that there is no information flow between
the two maps. NLGC, on the other hand, manages to disclose
the unidirectional causal dependency between the two maps

only for values of e� �0.5,0.7�. Finally, the EGCI, being
sensitive to both sample size and noise level, fails to give a
satisfying result. From these results, we can safely conclude
that only PEV-GC and TE give consistent results for this
noisy chaotic map data.
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FIG. 2. Unidirectionally coupled Hénon maps �N=104, no
noise�. �a� PEV-extended Granger causality. �b� Transfer entropy.
�c� Nonlinear Granger causality. �d� Extended Granger causality
index. The horizontal axis denotes the strength of coupling and the
vertical axis denotes the causality measure. Thick lines represent
X⇒Y causality and thin lines represent Y ⇒X causality. The plots
are averages over five experimental runs. The error bars denote
standard deviations of causality measures for five runs. See Table I
for parameters.
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FIG. 3. Unidirectionally coupled Hénon maps �N=104; 10%
noise�. �a� PEV-extended Granger causality. �b� Transfer entropy.
�c� Nonlinear Granger causality. �d� Extended Granger causality
index. The horizontal axis denotes the strength of coupling and the
vertical axis denotes the causality measure. Thick lines represent
X⇒Y causality and thin lines represent Y ⇒X causality. The plots
are averages over five experimental runs. The error bars denote
standard deviations of causality measures for five runs. See Table I
for parameters.
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FIG. 4. Unidirectionally coupled Hénon map �N=104; 30%
noise�. �a� PEV-extended Granger causality. �b� Transfer entropy.
�c� Nonlinear Granger causality. �d� Extended Granger causality
index. The horizontal axis denotes the strength of coupling and the
vertical axis denotes the causality measure. Thick lines represent
X⇒Y causality and thin lines represent Y ⇒X causality. The plots
are averages over five experimental runs. The error bars denote
standard deviations of causality measures for five runs. See Table I
for parameters.
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FIG. 5. Unidirectionally coupled Hénon maps �N=104; 50%
noise�. �a� PEV-extended Granger causality. �b� Transfer entropy.
�c� Nonlinear Granger causality. �d� Extended Granger causality
index. The horizontal axis denotes the strength of coupling and the
vertical axis denotes the causality measure. Thick lines represent
X⇒Y causality and thin lines represent Y ⇒X causality. The plots
are averages over five experimental runs. The error bars denote
standard deviations of causality measures for five runs. See Table I
for parameters.
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C. Noiseless sine-based chaotic map

In the third numerical experiment, we applied all four
measures to coupled chaotic maps featuring nonpolynomial
components:

xt+2 = 1.7 − 0.4xt+1
2 + 1.1 sin�xt� , �28�

yt+2 = 1.7 − 0.4yt+1
2 + 1.1 sin�yt − ext� , �29�

where the parameter e� �0,1� denotes the coupling strength
of the causal interaction from X to Y. The embedding of the
coupling parameter in the phase term of the sine function
makes the detection of the causal relationship more challeng-
ing. The parameter e was incremented by 0.025 steps, and
for each e, we collected N=103 and 104 samples after dis-
carding 105 samples as transients. For each experiment, we
performed five runs.

By construction the two time series were unidirectionally
coupled with time series xt influencing time series yt. It fol-
lows that xt causally affects yt �the strength of the causal
interaction should increase if the coupling parameter e in-
creases�. On the other hand, the causal influence of yt on xt
should be negligible due to the absence of an interaction
term in Eq. �28�.

The results are presented in Fig. 6 �N=103� and in Fig. 7
�N=104�. The parameters used for the analysis are summa-
rized in Table II. Those parameters are experimentally se-
lected so as to gave the best results. In this experiment, all
methods except the EGCI fail to measure the unidirectional
causal structure in the weak coupling condition �e�0.5�. An-
other rather surprising result is that TE is unstable in the
weak coupling area. This result differs from the previous two
experiments, in which TE performed quite well.

D. Noisy sine-based chaotic map

In the fourth experiment, we studied a noisy sine-based
map. As in the case of the second experiment, independent
identically distributed white noise was added to the extracted
bivariate time series. We tested the causality measures for
N=104 and noise levels of 10%, 20%, and 30%; each experi-
ment was conducted five times.

The results of our numerical experiments are presented in
Fig. 8 �noise level 10%�, Fig. 9 �noise level 20%�, and Fig.
10 �noise level 30%�. The parameters for each method are
presented in Table II. As evident from the graphs, PEV-GC is
robust against noise, and the estimated coupling strengths are

not even affected by heavy noise �30%�. On the other hand,
a deterioration of performance is notable in the TE and
EGCI. Especially for the TE, the results are far from the
theoretical predictions; for weaker couplings, the estimated
coupling direction is even inverted. NLGC displays a strange
behavior for values of e close to 0.6 where it suddenly falls
and rises again.

TABLE I. Parameters for experiments on unidirectionally
coupled Hénon maps. If there are two values, they correspond to the
cases of N=103 , 104, respectively. The embedding dimension is
m=2 except for TE.

Method Parameters

Transfer entropy �TE� r=8, m=1

Extended GC index �EGCI� L=50, d=0.5, 0.3

Nonlinear GC �NLGC� P=50, �=0.05

PEV-GC R=2
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FIG. 6. Unidirectionally coupled sine-based maps �N=103; no
noise�. �a� PEV-extended Granger causality. �b� Transfer entropy.
�c� Nonlinear Granger causality. �d� Extended Granger causality
index. The horizontal axis denotes the strength of coupling and the
vertical axis denotes the causality measure. Thick lines represent
X⇒Y causality and thin lines represent Y ⇒X causality. The plots
are averages over five experimental runs. The error bars denote
standard deviations of causality measures for five runs. See Table II
for parameters.
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FIG. 7. Unidirectionally coupled sine-based maps �N=104, no
noise�. �a� PEV-extended Granger causality. �b� Transfer entropy.
�c� Nonlinear Granger causality. �d� Extended Granger causality
index. The horizontal axis denotes the strength of coupling and the
vertical axis denotes the causality measure. Thick lines represent
X⇒Y causality and thin lines represent Y ⇒X causality. The plots
are averages over five experimental runs. The error bars denote
standard deviations of causality measures for five runs. See Table II
for parameters.
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E. Exponential function coupling data

So far, we have examined the performances of causality
measures on several chaotic maps. As you can see, PEV-GC
shows preferable results against the others.

In this experiment, we use the following dynamic models
for data generation:

xt+1 = 0.125xt +
25xt

4�xt
2 + 1�

+ 2 cos�1.2t� + N�0,1� , �30�

yt+1 = 0.1yt
2 − e�f�xt�2 − 0.3� + N�0,1� , �31�

where

f�xt� =
1.0

1.0 + exp�− xt�
�32�

and N�0,1� is a random value from a normal distribution of
zero mean and unit variance. One big difference from previ-
ous chaotic maps is that X drives Y through an exponential
�sigmoid� function. Apparently, exponential bases of NLGC
will suit for estimating the X⇒Y causal couplings. Note also

that the noise term is incorporated in each dynamic model.
The results are presented in Fig. 11 for N=104. The pa-

rameters for each method are presented in Table III. Those
parameters are experimentally selected so as to gave the best
results. The NLGC presents excellent estimation results as
predicted, reflecting the coupling structure of the data.
Though the bases are not polynomials, the PEV-GC still per-
forms quite well.

TABLE II. Parameters for experiments on unidirectionally
coupled sine-based maps. If there are two values, they correspond
to the cases of N=103 , 104, respectively. The embedding dimen-
sion is m=3 except for TE.

Method Parameters

Transfer entropy �TE� r=8, m=1

Extended GC index �EGCI� L=50, d=0.8, 0.6

Nonlinear GC �NLGC� P=50, �=1.0

PEV-GC R=3
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FIG. 8. Unidirectionally coupled sine-based maps �N=104; 10%
noise�. �a� PEV-extended Granger causality. �b� Transfer entropy.
�c� Nonlinear Granger causality. �d� Extended Granger causality
index. The horizontal axis denotes the strength of coupling and the
vertical axis denotes the causality measure. Thick lines represent
X⇒Y causality and thin lines represent Y ⇒X causality. The plots
are averages over five experimental runs. The error bars denote
standard deviations of causality measures for five runs. See Table II
for parameters.
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FIG. 9. Unidirectionally coupled sine-based maps �N=104; 20%
noise�. �a� PEV-extended Granger causality. �b� Transfer entropy.
�c� Nonlinear Granger causality. �d� Extended Granger causality
index. The horizontal axis denotes the strength of coupling and the
vertical axis denotes the causality measure. Thick lines represent
X⇒Y causality and thin lines represent Y ⇒X causality. The plots
are averages over five experimental runs. The error bars denote
standard deviations of causality measures for five runs. See Table II
for parameters.
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FIG. 10. Unidirectionally coupled sine-based maps �N=104;
30% noise�. �a� PEV-extended Granger causality. �b� Transfer en-
tropy. �c� Nonlinear Granger causality. �d� Extended Granger cau-
sality index. The horizontal axis denotes the strength of coupling
and the vertical axis denotes the causality measure. Thick lines
represent X⇒Y causality and thin lines represent Y ⇒X causality.
The plots are averages over five experimental runs. The error bars
denote standard deviations of causality measures for five runs. See
Table II for parameters.
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V. DISCUSSION

As the experimental results show, the PEV-GC success-
fully detects the underlying causal relationship in many
cases, regardless of the number of samples and the heaviness
of noise contamination. One possible reason for this is that
the PEV may be interpreted as a truncated Taylor expansion
of order R. This view is interesting because any elementary
and well-behaved function can be expanded into polynomials
by Taylor expansion. This indicates that the PEV is poten-
tially applicable to many different kinds of bivariate time
series.

It is also appealing for users that the PEV is easy to
implement and has only one control parameter �R�, com-
pared to other alternatives presented in this paper. Since tun-
ing of multiple parameters is a difficult task, the smaller
number of parameters is attractive in practice.

We also point out a substantial difference between the
polynomial embedding vector and the “kernel method” used
in nonlinear Granger causality �1�. Kernel methods are rather
popular nonlinear techniques in statistical pattern recognition
�e.g., �14��. They rely on the use of “kernel functions,” de-

signed as nonlinear distance functions �e.g., Gaussian, sig-
moid� between samples. One characteristic of kernel tech-
niques is that the size of the nonlinear �embedding� vector is
very dependent on the number of samples, not on the dimen-
sionality of each sample. On the other hand, the size of the
PEV is basically dependent on the dimension of a sample
�embedding dimension�, not on the sample size.

This point makes a difference between the two techniques
in computational costs. We can see this by comparing two
research tasks: image processing and time series analysis. In
image processing, an image has very high dimensionality
�e.g., even a very small 64�64 pixel image has 4096 pixels�
and the number of samples �images� is rather small �in many
cases, some hundreds�. Clearly, this is not an ideal setting for
the PEV—small number of samples for high-dimensional
data. Next, let us consider time series analysis. Time series
analysis techniques need to handle large sample pools �N
�103� for which, generally speaking, the embedding dimen-
sion is not too large �in many cases, m�10�. In this case,
kernel techniques may face a computational problem—many
samples for low-dimensional data. The number of samples
can be reduced by introducing a heuristic trick such as clus-
tering preprocessing in nonlinear Granger causality �1�, but it
may lead to a deterioration of performance unless the heu-
ristics properly reflect the nature of the data. Therefore, in
time series analysis we have two reasons to use the PEV: one
is computational advantage and the other is that the PEV
does not need heuristics which may deteriorate the perfor-
mance. As the results show, the PEV-GC performs efficiently
in the low-dimensional data set. However, we should note
that this may not be true for highly nonlinear or high-
dimensional data.

The main rationale behind using a nonlinear embedding
vector in combination with Granger causality was to extend
the traditional linear analysis and take into account also non-
linear structure. In principle it should be possible to extend
other measures of causality also, such as transfer entropy,
using the polynomial embedding vector. One caveat is that
its formulation could become rather complex. Specifically, in
the case of transfer entropy, we would need to estimate the
probability density function of the time series formed by the
embedding vectors. If the PEV is used, then such estimation
is rather difficult and requires a substantial computational
effort and a very large data pool �e.g., for m=3, R=3 the
PEV is a 19-dimensional vector for which we would have to
estimate probability distribution functions with up to 19 di-
mensions�.

VI. CONCLUSION

In this paper, we survey several nonlinear extensions of
Granger causality and assess their performances through nu-
merical experiments using a low-dimensional and low-order-
nonlinearity data set. In particular, we focus on the extension
of the time-delayed embedding vector �the polynomial em-
bedding vector� which in combination with Granger causal-
ity leads to a computationally efficient nonlinear extension of
Granger causality. We studied the effectiveness of this type
of extension in numerical experiments with some artificial
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FIG. 11. Unidirectional coupling data with exponential function
�N=104�. �a� PEV-extended Granger causality. �b� Transfer entropy.
�c� Nonlinear Granger causality. �d� Extended Granger causality
index. The horizontal axis denotes the strength of coupling and the
vertical axis denotes the causality measure. Thick lines represent
X⇒Y causality and thin lines represent Y ⇒X causality. The plots
are averages over five experimental runs. The error bars denote
standard deviations of causality measures for five runs. See Table
III for parameters.

TABLE III. Parameters for experiments on data unidirectionally
coupled through exponential function. The embedding dimension is
m=3 except for TE.

Method Parameters

Transfer entropy �TE� r=8, m=1

Extended GC index �EGCI� L=100, d=2.0

Nonlinear GC �NLGC� P=100, �=1.0

PEV-GC R=3
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chaotic maps. Intensive experiments concerning the type of
the maps, the number of samples, and the heaviness of noise
contamination were conducted, and the results showed that
the polynomial embedding vector based technique is superior
or comparable to other alternative measures in quantifying

the asymmetric causal interdependence between bivariate
time series data, at least in low-complexity systems. In future
work, we will apply the proposed PEV-GC to data gathered
from real world systems such as climate data, neurophysi-
ological signals, and sensory and motor variables of robots.
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